Joint Feature Selection in Distributed Stochastic Learning for Large-Scale Discriminative SMT

Patrick Simianer*, Stefan Riezler*, Chris Dyer†

* Department of Computational Linguistics, Heidelberg University, Germany
† Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA
Discriminative training in SMT

- Machine learning theory and practice suggests **benefits from tuning on large training samples**.
- Discriminative training in SMT has been content with tuning weights for **large feature sets on small development data**.
- Why is this?
 - Manually designed “error-correction features” (Chiang et al. NAACL’09) can be tuned well on small datasets.
 - “Syntactic constraint” features (Marton and Resnik ACL’08) don’t scale well to large data sets.
 - “Special” overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.
Discriminative training in SMT

- Machine learning theory and practice suggests benefits from tuning on large training samples.
- Discriminative training in SMT has been content with tuning weights for large feature sets on small development data.
- Why is this?
 - Manually designed “error-correction features” (Chiang et al. NAACL’09) can be tuned well on small datasets.
 - “Syntactic constraint” features (Marton and Resnik ACL’08) don’t scale well to large data sets.
 - “Special” overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.
Discriminative training in SMT

- Machine learning theory and practice suggests benefits from tuning on large training samples.
- Discriminative training in SMT has been content with tuning weights for large feature sets on small development data.
- Why is this?
 - Manually designed “error-correction features” (Chiang et al. NAACL’09) can be tuned well on small datasets.
 - “Syntactic constraint” features (Marton and Resnik ACL’08) don’t scale well to large data sets.
 - “Special” overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.
Discriminative training in SMT

- Machine learning theory and practice suggests benefits from tuning on large training samples.
- Discriminative training in SMT has been content with tuning weights for large feature sets on small development data.
- Why is this?
 - Manually designed “error-correction features” (Chiang et al. NAACL’09) can be tuned well on small datasets.
 - “Syntactic constraint” features (Marton and Resnik ACL’08) don’t scale well to large data sets.
 - “Special” overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.
Discriminative training in SMT

- Machine learning theory and practice suggests benefits from tuning on large training samples.
- Discriminative training in SMT has been content with tuning weights for large feature sets on small development data.
- Why is this?
 - Manually designed “error-correction features” (Chiang et al. NAACL’09) can be tuned well on small datasets.
 - “Syntactic constraint” features (Marton and Resnik ACL’08) don’t scale well to large data sets.
 - “Special” overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.
Discriminative training in SMT

- Machine learning theory and practice suggests **benefits from tuning on large training samples.**
- Discriminative training in SMT has been content with tuning weights for **large feature sets** on **small development data.**
- Why is this?
 - Manually designed “error-correction features” (Chiang et al. NAACL’09) can be tuned well on small datasets.
 - “Syntactic constraint” features (Marton and Resnik ACL’08) don’t scale well to large data sets.
 - “Special” overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.
Our goal: Tuning SMT on the training set

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?

- Our approach:
 - Deploy generic local features that can be read off efficiently from rules at runtime.
 - Combine distributed stochastic learning with feature selection inspired by multi-task learning.

- Results:
 - Feature selection is key for efficiency and quality when tuning on the training set.
 - Significant improvements over tuning large features sets on small dev set and over tuning on training data without l_1/l_2-based feature selection.
Our goal: Tuning SMT on the training set

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?
- Our approach:
 - Deploy **generic local features** that can be read off efficiently from rules at runtime.
 - Combine **distributed stochastic learning** with **feature selection** inspired by multi-task learning.
- Results:
 - **Feature selection is key** for efficiency and quality when tuning on the training set.
 - **Significant improvements** over tuning large features sets on small dev set and over tuning on training data without l_1/l_2-based feature selection.
Our goal: Tuning SMT on the training set

• Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?

• Our approach:
 • Deploy **generic local features** that can be read off efficiently from rules at runtime.
 • Combine **distributed stochastic learning** with **feature selection inspired by multi-task learning**.

• Results:
 • **Feature selection is key** for efficiency and quality when tuning on the training set.
 • **Significant improvements** over tuning large features sets on small dev set and over tuning on training data without \(l_1/l_2 \)-based feature selection.
Our goal: Tuning SMT on the training set

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?
- Our approach:
 - Deploy **generic local features** that can be read off efficiently from rules at runtime.
 - Combine **distributed stochastic learning** with **feature selection inspired by multi-task learning**.
- Results:
 - **Feature selection is key** for efficiency and quality when tuning on the training set.
 - **Significant improvements** over tuning large features sets on small dev set and over tuning on training data without l_1/l_2-based feature selection.
Our goal: Tuning SMT on the training set

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?
- Our approach:
 - Deploy **generic local features** that can be read off efficiently from rules at runtime.
 - Combine **distributed stochastic learning** with **feature selection** inspired by multi-task learning.
- Results:
 - **Feature selection is key** for efficiency and quality when tuning on the training set.
 - **Significant improvements** over tuning large features sets on small dev set and over tuning on training data without ℓ_1/ℓ_2-based feature selection.
Related work

- Many approaches to discriminative training in last ten years.
- Mostly “large scale” means feature sets of size $\leq 10K$, tuning on development data of size $2K$.
- Notable exceptions:
 - Liang et al. ACL’06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL’06: 35M features, 230K parallel sentences.
 - Blunsom et al. ACL’08: 7.8M features, 100K sentences.
- Inspiration for our work: Duh et al. WMT’10 use 500 100-best lists for multi-task learning of 2.4M features.
Related work

- Many approaches to discriminative training in last ten years.
- Mostly “large scale” means feature sets of size $\leq 10K$, tuning on development data of size $2K$.
- Notable exceptions:
 - Liang et al. ACL’06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL’06: 35M features, 230K parallel sentences.
 - Blunsom et al. ACL’08: 7.8M features, 100K sentences.
- Inspiration for our work: Duh et al. WMT’10 use 500 100-best lists for multi-task learning of 2.4M features.
Related work

• Many approaches to discriminative training in last ten years.
• Mostly “large scale” means feature sets of size $\leq 10K$, tuning on development data of size $2K$.
• Notable exceptions:
 • Liang et al. ACL’06: 1.5M features, 67K parallel sentences.
 • Tillmann and Zhang ACL’06: 35M features, 230K parallel sentences.
 • Blunsom et al. ACL’08: 7.8M features, 100K sentences.
• Inspiration for our work: Duh et al. WMT’10 use 500 100-best lists for multi-task learning of 2.4M features.
Related work

• Many approaches to discriminative training in last ten years.
• Mostly “large scale” means feature sets of size $\leq 10K$, tuning on development data of size $2K$.
• Notable exceptions:
 • Liang et al. ACL’06: 1.5M features, 67K parallel sentences.
 • Tillmann and Zhang ACL’06: 35M features, 230K parallel sentences.
 • Blunsom et al. ACL’08: 7.8M features, 100K sentences.
• Inspiration for our work: Duh et al. WMT’10 use 500 100-best lists for multi-task learning of 2.4M features.
Local features for SCFGs

(1) $X \rightarrow X_1 \text{ hat } X_2 \text{ versprochen}; X_1 \text{ promised } X_2$
(2) $X \rightarrow X_1 \text{ hat mir } X_2 \text{ versprochen; } X_1 \text{ promised me } X_2$
(3) $X \rightarrow X_1 \text{ versprach } X_2; X_1 \text{ promised } X_2$

- **Rule identifiers** for SCFG productions
 Examples: rule (1), (2) and (3)
- **Rule source n-gram** features
 Examples: “$X \text{ hat}”,” “hat $X”,” “$X \text{ versprochen}”
- **Rule shape** features
 Examples: (NT, term*, NT, term*; NT, term*, NT) for (1), (2); (NT, term*, NT; NT, term*, NT) for rule (3).
Local features for SCFGs

(1) \(X \rightarrow X_1 \text{ hat } X_2 \text{ versprochen}; X_1 \text{ promised } X_2 \)
(2) \(X \rightarrow X_1 \text{ hat mir } X_2 \text{ versprochen}; X_1 \text{ promised me } X_2 \)
(3) \(X \rightarrow X_1 \text{ versprach } X_2; X_1 \text{ promised } X_2 \)

- **Rule identifiers** for SCFG productions
 Examples: rule (1), (2) and (3)

- **Rule source n-gram** features
 Examples: “\(X \text{ hat} \)”, “\(\text{hat } X \)”, “\(X \text{ versprochen} \)"

- **Rule shape** features
 Examples: (\(\text{NT, term*}, \text{NT, term*}; \text{NT, term*}, \text{NT} \)) for (1), (2);
 (\(\text{NT, term*}, \text{NT}; \text{NT, term*}, \text{NT} \)) for rule (3).
Local features for SCFGs

(1) $X \rightarrow X_1 \text{ hat } X_2 \text{ versprochen}; X_1 \text{ promised } X_2$
(2) $X \rightarrow X_1 \text{ hat mir } X_2 \text{ versprochen; }$
 $X_1 \text{ promised me } X_2$
(3) $X \rightarrow X_1 \text{ versprach } X_2; X_1 \text{ promised } X_2$

- **Rule identifiers** for SCFG productions
 Examples: rule (1), (2) and (3)

- **Rule source n-gram** features
 Examples: “$X \text{ hat}”$, “$\text{hat } X”$, “$X \text{ versprochen}”$

- **Rule shape** features
 Examples: (NT, term*, NT, term*; NT, term*, NT) for (1), (2);
 (NT, term*, NT; NT, term*, NT) for rule (3).
Local features for SCFGs

(1) $X \rightarrow X_1 \text{ hat } X_2 \text{ versprochen}; \ X_1 \text{ promised } X_2$
(2) $X \rightarrow X_1 \text{ hat mir } X_2 \text{ versprochen};$
 $\quad X_1 \text{ promised me } X_2$
(3) $X \rightarrow X_1 \text{ versprach } X_2; \ X_1 \text{ promised } X_2$

- **Rule identifiers** for SCFG productions
 Examples: rule (1), (2) and (3)
- **Rule source n-gram** features
 Examples: “X hat”, “hat X”, “X versprochen”
- **Rule shape** features
 Examples: (NT, term*, NT, term*; NT, term*, NT) for (1), (2);
 (NT, term*, NT; NT, term*, NT) for rule (3).
Learning framework: Pairwise ranking using SGD

- Preference pairs $x_j = (x_j^{(1)}, x_j^{(2)})$ where $x_j^{(1)}$ is preferred over $x_j^{(2)}$, are defined by sorting translations $x \in \mathbb{R}^D$ by smoothed sentence-wise BLEU.

- Hinge loss-type objective

$$l_j(w) = (- \langle w, \tilde{x}_j \rangle)_+$$

where $\tilde{x}_j = x_j^{(1)} - x_j^{(2)}$, $(a)_+ = \max(0, a)$, $w \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

- Ranking perceptron by stochastic subgradient descent:

$$\nabla l_j(w) = \begin{cases} -\tilde{x}_j & \text{if } \langle w, \tilde{x}_j \rangle \leq 0, \\ 0 & \text{else}. \end{cases}$$
Learning framework: Pairwise ranking using SGD

- Preference pairs $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$ where $\mathbf{x}_j^{(1)}$ is preferred over $\mathbf{x}_j^{(2)}$, are defined by sorting translations $\mathbf{x} \in \mathbb{R}^D$ by smoothed sentence-wise BLEU.

- Hinge loss-type objective

$$l_j(\mathbf{w}) = (−\langle \mathbf{w}, \tilde{\mathbf{x}}_j \rangle)_+$$

where $\tilde{\mathbf{x}}_j = \mathbf{x}_j^{(1)} − \mathbf{x}_j^{(2)}$, $(a)_+ = \max(0, a)$, $\mathbf{w} \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

- Ranking perceptron by stochastic subgradient descent:

$$\nabla l_j(\mathbf{w}) = \begin{cases} -\tilde{\mathbf{x}}_j & \text{if } \langle \mathbf{w}, \tilde{\mathbf{x}}_j \rangle \leq 0, \\ 0 & \text{else.} \end{cases}$$
Learning framework: Pairwise ranking using SGD

• Preference pairs $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$ where $\mathbf{x}_j^{(1)}$ is preferred over $\mathbf{x}_j^{(2)}$, are defined by sorting translations $\mathbf{x} \in \mathbb{R}^D$ by smoothed sentence-wise BLEU.

• Hinge loss-type objective

$$l_j(\mathbf{w}) = (- \langle \mathbf{w}, \tilde{\mathbf{x}}_j \rangle)_+$$

where $\tilde{\mathbf{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$, $(a)_+ = \max(0, a)$, $\mathbf{w} \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

• **Ranking perceptron** by stochastic subgradient descent:

$$\nabla l_j(\mathbf{w}) = \begin{cases} -\tilde{\mathbf{x}}_j & \text{if } \langle \mathbf{w}, \tilde{\mathbf{x}}_j \rangle \leq 0, \\ 0 & \text{else.} \end{cases}$$
Multipartite ranking

- Instead of training on all pairs, only compare good translations with bad ones without teasing apart small differences.
- Build pairs from levels HI-MID, HI-LOW, and MID-LOW, but not from translations inside sets on the same level.\(^1\)

\(^1\) Here: HI = LOW = 10% of 100-best list.
Multipartite ranking

- Instead of training on all pairs, only compare good translations with bad ones without teasing apart small differences.
- Build pairs from levels HI-MID, HI-LOW, and MID-LOW, but not from translations inside sets on the same level.\(^1\)

\(^1\) Here: HI = LOW = 10% of 100-best list.
Algorithm 1

- Baseline, **not distributed**, used for **tuning on dev set**.
- **Averages** final weight updates of each epoch.

Algorithm 1 SGD

```markdown
Initialize \( w_{0,0,0} \leftarrow 0 \).
for epochs \( t \leftarrow 0 \ldots T - 1 \): do
    for all \( i \in \{0 \ldots I - 1\} \): do
        Decode \( i \)th input with \( w_{t,i,0} \).
        for all pairs \( x_j, j \in \{0 \ldots P - 1\} \): do
            \( w_{t,i,j+1} \leftarrow w_{t,i,j} - \eta \nabla l_j(w_{t,i,j}) \)
        end for
        \( w_{t,i+1,0} \leftarrow w_{t,i,P} \)
    end for
    \( w_{t+1,0,0} \leftarrow w_{t,I,0} \)
end for
return \( \frac{1}{T} \sum_{t=1}^{T} w_{t,0,0} \)
```
Algorithm 2

- \(\approx \) Distributed SGD w/ MapReduce (Zinkevich et al. NIPS’10).
- Mixing of final parameters from each shard.

Algorithm 2 MixSGD

Partition data into \(Z \) shards, each of size \(S \leftarrow I/Z \); distribute to machines.

for all shards \(z \in \{1 \ldots Z\} \): parallel do

Initialize \(w_{z,0,0,0} \leftarrow 0 \).

for epochs \(t \leftarrow 0 \ldots T - 1 \): do

for all \(i \in \{0 \ldots S - 1\} \): do

Decode \(i^{\text{th}} \) input with \(w_{z,t,i,0} \).

for all pairs \(x_j, j \in \{0 \ldots P - 1\} \): do

\(w_{z,t,i,j+1} \leftarrow w_{z,t,i,j} - \eta \nabla l_j(w_{z,t,i,j}) \)

end for

\(w_{z,t,i+1,0} \leftarrow w_{z,t,i,P} \)

end for

\(w_{z,t+1,0,0} \leftarrow w_{z,t,S,0} \)

end for

Collect final weights from each machine,

return \(\frac{1}{Z} \sum_{z=1}^{Z} \left(\frac{1}{T} \sum_{t=1}^{T} w_{z,t,0,0} \right) \).
Algorithm 3

- \(\approx \textbf{Iterative Mixing} \) w/ MapReduce (McDonald et al. HLT’10).
- Mixing of weights from each shard after each epoch.

Algorithm 3 IterMixSGD

Partition data into \(Z \) shards, each of size \(S \leftarrow I/Z \); distribute to machines. Initialize \(v \leftarrow 0 \).

for epochs \(t \leftarrow 0 \ldots T - 1 \): do

 for all shards \(z \in \{1 \ldots Z\} \): parallel do
 \(w_{z,t,0,0} \leftarrow v \)
 for all \(i \in \{0 \ldots S - 1\} \): do
 Decode \(i^{th} \) input with \(w_{z,t,i,0} \).
 for all pairs \(x_j, j \in \{0 \ldots P - 1\} \): do
 \(w_{z,t,i,j+1} \leftarrow w_{z,t,i,j} - \eta \nabla l_j (w_{z,t,i,j}) \)
 end for
 \(w_{z,t,i+1,0} \leftarrow w_{z,t,i,P} \)
 end for
 end for

Collect weights \(v \leftarrow \frac{1}{Z} \sum_{z=1}^{Z} w_{z,t,S,0} \).

end for

return \(v \)
Algorithm 4

- **Feature selection** on shards after each epoch,
- combined with **iterative mixing of reduced weight vectors**.

Algorithm 4 IterSelSGD

Partition data into Z shards, each of size $S = I/Z$; distribute to machines.

Initialize $v \leftarrow 0$.

for epochs $t \leftarrow 0 \ldots T - 1$:

for all shards $z \in \{1 \ldots Z\}$: parallel do

$w_{z,t,0,0} \leftarrow v$

for all $i \in \{0 \ldots S - 1\}$: do

Decode i^{th} input with $w_{z,t,i,0}$.

for all pairs $x_j, j \in \{0 \ldots P - 1\}$: do

$w_{z,t,i,j+1} \leftarrow w_{z,t,i,j} - \eta \nabla l_j(w_{z,t,i,j})$

end for

$w_{z,t,i+1,0} \leftarrow w_{z,t,i,P}$

end for

end for

Collect/stack weights $W \leftarrow [w_{1,t,s,0} | \ldots | w_{Z,t,s,0}]^T$

Select top K feature columns of W by ℓ_2 norm and

for $k \leftarrow 1 \ldots K$ do

$v[k] = \frac{1}{Z} \sum_{z=1}^{Z} W[z][k]$.

end for

end for

return v
Algorithm 4 as feature selection procedure

- Represent weights in a Z-by-D matrix

 $W = [w_{z1} | \ldots | w_{zz}]^T$

 of stacked D-dimensional weight vectors across Z shards.

- Select top K feature columns that have highest ℓ_2 norm over shards (or equivalently, by setting a threshold λ).

- Average weights of selected features $k \leftarrow 1 \ldots K$ over shards

 $v[k] = \frac{1}{Z} \sum_{z=1}^{Z} W[z][k]$

- Resend reduced weight vector v to shards for new epoch.
Algorithm 4 as feature selection procedure

- Represent weights in a Z-by-D matrix
 \[W = \begin{bmatrix} w_{z1} & \cdots & w_{zz} \end{bmatrix}^T \]
 of stacked D-dimensional weight vectors across Z shards.

- Select top K feature columns that have highest ℓ_2 norm over shards (or equivalently, by setting a threshold λ).

- Average weights of selected features $k \leftarrow 1 \ldots K$ over shards
 \[v[k] = \frac{1}{Z} \sum_{z=1}^{Z} W[z][k] \]

- Resend reduced weight vector v to shards for new epoch.
Algorithm 4 as feature selection procedure

• Represent weights in a Z-by-D matrix

$$W = [w_{z1} | \ldots | w_{zz}]^T$$

of stacked D-dimensional weight vectors across Z shards.

• **Select top K feature columns that have highest ℓ_2 norm over shards** (or equivalently, by setting a threshold λ).

• **Average weights of selected features** $k \leftarrow 1 \ldots K$ over shards

$$v[k] = \frac{1}{Z} \sum_{z=1}^{Z} W[z][k]$$

• Resend reduced weight vector v to shards for new epoch.
Algorithm 4 as feature selection procedure

- Represent weights in a Z-by-D matrix

\[W = [w_{z1} | \ldots | w_{zz}]^T \]

of stacked D-dimensional weight vectors across Z shards.

- Select top K feature columns that have highest ℓ_2 norm over shards (or equivalently, by setting a threshold λ).

- Average weights of selected features $k \leftarrow 1 \ldots K$ over shards

\[v[k] = \frac{1}{Z} \sum_{z=1}^{Z} W[z][k] \]

- Resend reduced weight vector v to shards for new epoch.
Algorithm 4 as ℓ_1/ℓ_2 regularization

- Let w_d be the dth column vector of W, representing the weights for the dth feature across shards.
- Weighted ℓ_1/ℓ_2 norm:

$$\lambda \|W\|_{1,2} = \lambda \sum_{d=1}^{D} \|w_d\|_2.$$

- Each ℓ_2 norm of a weight column represents the relevance of the corresponding feature across shards.
- The ℓ_1 sum of the ℓ_2 norms enforces a selection among features based on these norms.
Algorithm 4 as ℓ_1/ℓ_2 regularization

- Let w_d be the dth column vector of W, representing the weights for the dth feature across shards.
- **Weighted ℓ_1/ℓ_2 norm:**

$$\lambda \| W \|_{1,2} = \lambda \sum_{d=1}^{D} \| w_d \|_2.$$

- Each ℓ_2 norm of a weight column represents the relevance of the corresponding feature across shards.
- The ℓ_1 sum of the ℓ_2 norms enforces a selection among features based on these norms.
Algorithm 4 as ℓ_1/ℓ_2 regularization

- Let w_d be the dth column vector of W, representing the weights for the dth feature across shards.
- **Weighted ℓ_1/ℓ_2 norm:**

$$\lambda \|W\|_{1,2} = \lambda \sum_{d=1}^{D} \|w_d\|_2.$$

- Each ℓ_2 norm of a weight column represents the **relevance** of the corresponding feature across shards.
- The ℓ_1 sum of the ℓ_2 norms enforces a selection among features based on these norms.
Algorithm 4 as ℓ_1/ℓ_2 regularization

- Let w_d be the dth column vector of W, representing the weights for the dth feature across shards.
- **Weighted ℓ_1/ℓ_2 norm:**

\[\lambda \| W \|_{1,2} = \lambda \sum_{d=1}^{D} \| w_d \|_2. \]

- Each ℓ_2 norm of a weight column represents the relevance of the corresponding feature across shards.
- The ℓ_1 sum of the ℓ_2 norms enforces a selection among features based on these norms.
\(l_1 / l_2 \) regularization and multi-task learning

- **Multi-task learning** aims to find **common set of features** that are **relevant simultaneously to different tasks**.

- Minimizing \(l_1 / l_2 \) norm promotes **feature sharing** and enforces **similar sparsity patterns across tasks**.

- Example: 2 matrices for 5 features and 3 tasks/shards.

 \[
 \begin{array}{c}
 w_{z_1} \ \ \begin{bmatrix} w_1 \ w_2 \ w_3 \ w_4 \ w_5 \end{bmatrix} \\
 w_{z_2} \ \ \begin{bmatrix} 0 \ 0 \ 3 \ 0 \ 0 \end{bmatrix} \\
 w_{z_3} \ \ \begin{bmatrix} 0 \ 0 \ 0 \ 2 \ 3 \end{bmatrix}
 \end{array}
 \begin{array}{c}
 \text{column } l_2 \text{ norm:} \\
 \text{\(l_1 \text{ sum:} \)}
 \end{array}
 \begin{array}{c}
 6 \ 4 \ 0 \ 0 \ 0 \\
 0 \ 0 \ 3 \ 0 \ 0 \\
 0 \ 0 \ 0 \ 2 \ 3
 \end{array}
 \begin{array}{c}
 \Rightarrow 18
 \end{array}
 \begin{array}{c}
 6 \ 4 \ 0 \ 0 \ 0 \\
 3 \ 0 \ 0 \ 0 \ 0 \\
 2 \ 3 \ 0 \ 0 \ 0
 \end{array}
 \begin{array}{c}
 \Rightarrow 12
 \end{array}
 \]

- Right-hand side has smaller \(l_1 / l_2 \) norm (12 instead of 18).

- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).\(^2\)

\(^2\)Alternative is incremental forward selection (Obozinski et al. 2010)
ℓ₁/ℓ₂ regularization and multi-task learning

- **Multi-task learning** aims to find **common set of features** that are **relevant simultaneously to different tasks**.
- Minimizing ℓ₁/ℓ₂ norm promotes **feature sharing** and enforces **similar sparsity patterns across tasks**.
- Example: 2 matrices for 5 features and 3 tasks/shards.

<table>
<thead>
<tr>
<th></th>
<th>w₁</th>
<th>w₂</th>
<th>w₃</th>
<th>w₄</th>
<th>w₅</th>
<th>w₁</th>
<th>w₂</th>
<th>w₃</th>
<th>w₄</th>
<th>w₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>w₂₁</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w₂₂</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w₂₃</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| column ℓ₂ norm: | 6 | 4 | 3 | 2 | 3 | 7 | 5 | 0 | 0 | 0 |
| ℓ₁ sum: | 18 | 12 |

- Right-hand side has smaller ℓ₁/ℓ₂ norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).²

²Alternative is incremental forward selection (Obozinski et al. 2010)
\(\ell_1/\ell_2 \) regularization and multi-task learning

- **Multi-task learning** aims to find **common set of features** that are **relevant simultaneously to different tasks**.
- Minimizing \(\ell_1/\ell_2 \) norm promotes **feature sharing** and enforces **similar sparsity patterns across tasks**.
- Example: 2 matrices for 5 features and 3 tasks/shards.

\[
\begin{bmatrix}
 w_{z_1} & 6 & 4 & 0 & 0 & 0 \\
 w_{z_2} & 0 & 0 & 3 & 0 & 0 \\
 w_{z_3} & 0 & 0 & 0 & 2 & 3 \\
\end{bmatrix}
\quad \begin{bmatrix}
 w_{z_1} & 6 & 4 & 0 & 0 & 0 \\
 w_{z_2} & 3 & 0 & 0 & 0 & 0 \\
 w_{z_3} & 2 & 3 & 0 & 0 & 0 \\
\end{bmatrix}
\]

- Right-hand side has smaller \(\ell_1/\ell_2 \) norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).\(^2\)

\(^2\)Alternative is incremental forward selection (Obozinski et al. 2010)
\(\ell_1 / \ell_2 \) regularization and multi-task learning

- **Multi-task learning** aims to find **common set of features** that are **relevant simultaneously to different tasks**.
- Minimizing \(\ell_1 / \ell_2 \) norm promotes **feature sharing** and enforces **similar sparsity patterns across tasks**.
- Example: 2 matrices for 5 features and 3 tasks/shards.

\[
\begin{align*}
\mathbf{w}_{z_1} & = \begin{bmatrix} 6 & 4 & 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow 18 \\
\mathbf{w}_{z_2} & = \begin{bmatrix} 0 & 0 & 3 & 0 & 0 \end{bmatrix} \quad \Rightarrow 12 \\
\mathbf{w}_{z_3} & = \begin{bmatrix} 0 & 0 & 0 & 2 & 3 \end{bmatrix}
\end{align*}
\]

- Right-hand side has smaller \(\ell_1 / \ell_2 \) norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).\(^2\)

\(^2\)Alternative is incremental forward selection (Obozinski et al. 2010)
\(\ell_1/\ell_2 \) regularization and multi-task learning

- **Multi-task learning** aims to find common set of features that are relevant simultaneously to different tasks.
- Minimizing \(\ell_1/\ell_2 \) norm promotes feature sharing and enforces similar sparsity patterns across tasks.
- Example: 2 matrices for 5 features and 3 tasks/shards.

\[
\begin{align*}
[w_{z1}] & = \begin{bmatrix} 6 & 4 & 0 & 0 & 0 \end{bmatrix} & \Rightarrow 18 \\
[w_{z2}] & = \begin{bmatrix} 0 & 0 & 3 & 0 & 0 \end{bmatrix} & \Rightarrow 12 \\
[w_{z3}] & = \begin{bmatrix} 0 & 0 & 0 & 2 & 3 \end{bmatrix}
\end{align*}
\]

- Right-hand side has smaller \(\ell_1/\ell_2 \) norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).\(^2\)

\(^2\)Alternative is incremental forward selection (Obozinski et al. 2010)
Experiments: SMT setup

- German-to-English hierarchical phrase-based translation (Chiang CL’07).
- cdec (Dyer et al. ACL’10) framework for decoding, induction of SCFGs, compound splitting, etc.
- 3-gram and 5-gram language models using SRILM (Stolcke ICSLP’02) and binarized for efficient querying using kenlm (Heafield WMT’11).
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP’07), extracted by leave-one-out (Zollmann and Sima’an JACL’05) for training-set tuning.
Experiments: SMT setup

- German-to-English hierarchical phrase-based translation (Chiang CL’07).
- cdec (Dyer et al. ACL’10) framework for decoding, induction of SCFGs, compound splitting, etc.
- 3-gram and 5-gram language models using SRILM (Stolcke ICSLP’02) and binarized for efficient querying using kenlm (Heafield WMT’11).
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP’07), extracted by leave-one-out (Zollmann and Sima’an JACL’05) for training-set tuning.
Experiments: SMT setup

- German-to-English hierarchical phrase-based translation (Chiang CL’07).
- **cdec** (Dyer et al. ACL’10) framework for decoding, induction of SCFGs, compound splitting, etc.
- 3-gram and 5-gram language models using SRILM (Stolcke ICSLP’02) and binarized for efficient querying using kenlm (Heafield WMT’11).
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP’07), extracted by leave-one-out (Zollmann and Sima’an JACL’05) for training-set tuning.
Experiments: SMT setup

- German-to-English hierarchical phrase-based translation (Chiang CL’07).
- **cdec** (Dyer et al. ACL’10) framework for decoding, induction of SCFGs, compound splitting, etc.
- 3-gram and 5-gram language models using SRILM (Stolcke ICSLP’02) and binarized for efficient querying using kenlm (Heafield WMT’11).
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP’07), extracted by leave-one-out (Zollmann and Sima’an JACL’05) for training-set tuning.
Distributed processing

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.
Distributed processing

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.
Distributed processing

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.
Distributed processing

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.
Distributed processing

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.
Learning setup

- Perceptron is deterministic when started from 0 vector while MIRA and PRO results fluctuate due to hypergraph sampling.

![Diagram showing BLEU scores]

- Interest in relative gains by scaling up features and/or data, thus choice for perceptron as base learner.
- Statistical significance assessed by Approximate Randomization (Noreen’89).
Learning setup

- Perceptron is deterministic when started from 0 vector while MIRA and PRO results fluctuate due to hypergraph sampling.

- Interest in relative gains by scaling up features and/or data, thus choice for perceptron as base learner.
 - Statistical significance assessed by Approximate Randomization (Noreen’89).
Learning setup

- Perceptron is deterministic when started from 0 vector while MIRA and PRO results fluctuate due to hypergraph sampling.

- Interest in relative gains by scaling up features and/or data, thus choice for perceptron as base learner.

- Statistical significance assessed by Approximate Randomization (Noreen’89).
Learning setup

- Perceptron is deterministic when started from 0 vector while MIRA and PRO results fluctuate due to hypergraph sampling.

- Interest in relative gains by scaling up features and/or data, thus choice for perceptron as base learner.
- Statistical significance assessed by Approximate Randomization (Noreen’89).
Data

News Commentary (nc)

<table>
<thead>
<tr>
<th></th>
<th>train-nc</th>
<th>lm-train-nc</th>
<th>dev-nc</th>
<th>devtest-nc</th>
<th>test-nc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>132,753</td>
<td>180,657</td>
<td>1057</td>
<td>1064</td>
<td>2007</td>
</tr>
<tr>
<td>Tokens de</td>
<td>3,530,907</td>
<td>–</td>
<td>27,782</td>
<td>28,415</td>
<td>53,989</td>
</tr>
<tr>
<td>Tokens en</td>
<td>3,293,363</td>
<td>4,394,428</td>
<td>26,098</td>
<td>26,219</td>
<td>50,443</td>
</tr>
<tr>
<td>Rule Count</td>
<td>14,350,552 (1G)</td>
<td>–</td>
<td>2,322,912</td>
<td>2,320,264</td>
<td>3,274,771</td>
</tr>
</tbody>
</table>

Europarl (ep)

<table>
<thead>
<tr>
<th></th>
<th>train-ep</th>
<th>lm-train-ep</th>
<th>dev-ep</th>
<th>devtest-ep</th>
<th>test-ep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>1,655,238</td>
<td>2,015,440</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Tokens de</td>
<td>45,293,925</td>
<td>–</td>
<td>57,723</td>
<td>56,783</td>
<td>59,297</td>
</tr>
<tr>
<td>Tokens en</td>
<td>45,374,649</td>
<td>54,728,786</td>
<td>58,825</td>
<td>58,100</td>
<td>60,240</td>
</tr>
<tr>
<td>Rule Count</td>
<td>203,552,525 (31.5G)</td>
<td>–</td>
<td>17,738,763</td>
<td>17,682,176</td>
<td>18,273,078</td>
</tr>
</tbody>
</table>

News Crawl ($crawl$)

<table>
<thead>
<tr>
<th></th>
<th>dev-$crawl$</th>
<th>test-$crawl10$</th>
<th>test-$crawl11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>2051</td>
<td>2489</td>
<td>3003</td>
</tr>
<tr>
<td>Tokens de</td>
<td>49,848</td>
<td>64,301</td>
<td>76,193</td>
</tr>
<tr>
<td>Tokens en</td>
<td>49,767</td>
<td>61,925</td>
<td>74,753</td>
</tr>
<tr>
<td>Rule Count</td>
<td>9,404,339</td>
<td>11,307,304</td>
<td>12,561,636</td>
</tr>
</tbody>
</table>
Results on News Commentary (nc) data

<table>
<thead>
<tr>
<th>Alg.</th>
<th>Tuning set</th>
<th>Features</th>
<th>#Features</th>
<th>test-nc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dev-nc</td>
<td>default</td>
<td>12</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>dev-nc</td>
<td>+id,ng,shape</td>
<td>180k</td>
<td>28.15(^{34})</td>
</tr>
<tr>
<td>2</td>
<td>train-nc</td>
<td>default</td>
<td>12</td>
<td>27.86</td>
</tr>
<tr>
<td></td>
<td>train-nc</td>
<td>+id,ng,shape</td>
<td>4.7M</td>
<td>27.86(^{34})</td>
</tr>
<tr>
<td>3</td>
<td>train-nc</td>
<td>default</td>
<td>12</td>
<td>27.94(\dagger)</td>
</tr>
<tr>
<td></td>
<td>train-nc</td>
<td>+id,ng,shape</td>
<td>4.7M</td>
<td>28.55(^{124})</td>
</tr>
<tr>
<td>4</td>
<td>train-nc</td>
<td>+id,ng,shape</td>
<td>100k</td>
<td>28.81(^{123})</td>
</tr>
</tbody>
</table>

- Scaling from 12 to 180K features on dev set does not help.
- **Scaling to full feature- and training-set does help** for Alg.3 (+0.4 BLEU) and Alg. 4 (+0.8 BLEU).
- **Alg.4 gives best BLEU** and is **most efficient on large data**.
Results on Europarl (ep) and News Crawl (crawl) data

<table>
<thead>
<tr>
<th>Alg.</th>
<th>Tuning set</th>
<th>Features</th>
<th>#Features</th>
<th>test-ep</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dev-ep</td>
<td>default</td>
<td>12</td>
<td>26.42†</td>
</tr>
<tr>
<td></td>
<td>dev-ep</td>
<td>+id,ng,shape</td>
<td>300k</td>
<td>28.37</td>
</tr>
<tr>
<td>4</td>
<td>train-ep</td>
<td>+id,ng,shape</td>
<td>100k</td>
<td>28.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alg.</th>
<th>Tuning set</th>
<th>Features</th>
<th>#Feats</th>
<th>test-crawl/10</th>
<th>test-crawl/11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dev-crawl</td>
<td>default</td>
<td>12</td>
<td>15.39†</td>
<td>14.43†</td>
</tr>
<tr>
<td></td>
<td>dev-crawl</td>
<td>+id,ng,shape</td>
<td>300k</td>
<td>17.84</td>
<td>16.834</td>
</tr>
<tr>
<td>4</td>
<td>train-ep</td>
<td>+id,ng,shape</td>
<td>100k</td>
<td>19.12†</td>
<td>17.33†</td>
</tr>
</tbody>
</table>

- **On large scale, only Alg.4 is feasible** (1.7M parallel data!)
- Scaling up feature sets helps even for dev-set tuning.
- **Additional gains of 0.5 to 1.3 BLEU by scaling to large tuning set** on out-of-domain news crawl test data.
• SMT inference on large data sets is expensive, thus good parallelization is key.

• Our algorithm makes large-scale tuning in SMT feasible by
 • MapReduce-friendliness in decoding and learning,
 • Combination of parallel SGD and feature selection,
 • Efficiently computable features.

• And: It works!

• Future work:
 • Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 • More and better features and more sophisticated learners.
 • Application to multi-task patent translation.
Conclusion

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - **MapReduce-friendliness** in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: **It works**!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.
Conclusion

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - **MapReduce-friendliness** in decoding and learning,
 - **Combination of parallel SGD and feature selection**,
 - Efficiently computable features.
- And: **It works**!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.
Conclusion

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - **MapReduce-friendliness** in decoding and learning,
 - **Combination of parallel SGD and feature selection**,
 - **Efficiently computable features**.
- And: **It works!**
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.
Conclusion

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - **MapReduce-friendliness** in decoding and learning,
 - **Combination of parallel SGD and feature selection**,
 - **Efficiently computable features**.
- And: **It works!**
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.
Conclusion

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - **MapReduce-friendliness** in decoding and learning,
 - **Combination of parallel SGD and feature selection**,
 - **Efficiently computable features**.
- And: **It works!**
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.
Conclusion

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - **MapReduce-friendliness** in decoding and learning,
 - **Combination of parallel SGD and feature selection,**
 - **Efficiently computable features.**

- And: **It works!**
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.
Conclusion

• SMT inference on large data sets is expensive, thus **good parallelization is key**.
• Our algorithm makes large-scale tuning in SMT feasible by
 • **MapReduce-friendliness** in decoding and learning,
 • **Combination of parallel SGD and feature selection**,
 • Efficiently computable features.
• And: **It works**!
• Future work:
 • Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 • More and better features and more sophisticated learners.
 • Application to multi-task patent translation.
Code

- dtrain code is part of cdec:
 https://github.com/redpony/cdec.
Thanks for your attention!