ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

Tuning SMT Systems on the Training Set

Chris Dyer, Patrick Simianer, Stefan Riezler, Phil Blunsom, Eva Hasler

Project Report MT Marathon 2011 FBK Trento

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

Goal: Discriminative training using sparse features on the full training set

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

Goal: Discriminative training using sparse features on the full training set

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Approach: Picky-picky / elitist learning:

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

Goal: Discriminative training using sparse features on the full training set

Approach: Picky-picky / elitist learning:

• Stochastic learning with true random selection of examples.

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

Goal: Discriminative training using sparse features on the full training set

Approach: Picky-picky / elitist learning:

- Stochastic learning with true random selection of examples.
- Feature selection according to various regularization criteria.

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

Goal: Discriminative training using sparse features on the full training set

Approach: Picky-picky / elitist learning:

- Stochastic learning with true random selection of examples.
- Feature selection according to various regularization criteria.
- Leave-one-out estimation: Leave out sentence/shard currently being trained on when extracting rules/features in training.

Dyer, Simianer, Riezler, Blunsom, Hasler

• cdec decoder (https://github.com/redpony/cdec)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dyer, Simianer, Riezler, Blunsom, Hasler

• cdec decoder (https://github.com/redpony/cdec)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Hiero SCFG grammars

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• cdec decoder (https://github.com/redpony/cdec)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Hiero SCFG grammars
- WMT11 news-commentary corpus

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• cdec decoder (https://github.com/redpony/cdec)

- Hiero SCFG grammars
- WMT11 news-commentary corpus
 - 132,755 parallel sentences

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• cdec decoder (https://github.com/redpony/cdec)

- Hiero SCFG grammars
- WMT11 news-commentary corpus
 - 132,755 parallel sentences
 - German-to-English

Learning Framework: SGD for Pairwise Ranking

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler Algorithm extended ranking voted perceptron: training $D = \{D^1, ..., D^M\}$: Development set $C^m = \{c_1^m, ..., c_N^m\}$: the original N-best list of D^m c_n^m : n-th candidate in C^m $X^m = \{x_1^m, \dots, x_N^m\}$: (reordered) N-best list of D^m x_i^m : *i*-th candidate in the (reordered) N-best list X^m $Ranking(W, C^m)$: returns N-best list of C^m reordered based on the score, $s_n^m = \langle W, \phi(c_n^m) \rangle$ $\phi(x_{-}^{m})$: the feature vector of x_{-}^{m} W: weight vector $V = \{V_1, ..., V_T\}$; set of weight vectors T: Number of pre-defined iteration 1: For t = 1, ..., T2: For m = 1, ..., M;; for each sample in dev-set $X^m \leftarrow Ranking(W, C^m)$ 3: For $i = 1, ..., |X^m|$ 4: 5: For $j = i + 1, ..., |X^m|$ 6: If $(BLEU(x_i^m) > BLEU(x_i^m))$ 7: & $WER(x_i^m) \leq WER(x_i^m)$ $s = (BLEU(x_i^m) - BLEU(x_i^m))$ 8: $W = W + s * (\phi(x_i^m) - \phi(x_i^m))$ 9: 10. End If End_For 11: 12: End For $V_t = W$ 13. End For 14. 15: End For 16: Return V

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Random sampling of pairs from full chart for pairwise ranking:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- Random sampling of pairs from full chart for pairwise ranking:
 - First sample translations according to their model score.

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- Random sampling of pairs from full chart for pairwise ranking:
 - First sample translations according to their model score.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Then sample pairs.

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- Random sampling of pairs from full chart for pairwise ranking:
 - First sample translations according to their model score.
 - Then sample pairs.
- Sampling will diminish problem of learning to discriminate translations that are too close (in terms of sentence-wise approx. BLEU) to each other.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- Random sampling of pairs from full chart for pairwise ranking:
 - First sample translations according to their model score.
 - Then sample pairs.
- Sampling will diminish problem of learning to discriminate translations that are too close (in terms of sentence-wise approx. BLEU) to each other.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

• Sampling will also speed up learning.

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- Random sampling of pairs from full chart for pairwise ranking:
 - First sample translations according to their model score.
 - Then sample pairs.
- Sampling will diminish problem of learning to discriminate translations that are too close (in terms of sentence-wise approx. BLEU) to each other.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- Sampling will also speed up learning.
- Lots of variations on sampling possible ...

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Efficient computation of features from local rule context:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

Efficient computation of features from local rule context:
Hiero SCFG rule identifier

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Efficient computation of features from local rule context:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Hiero SCFG rule identifier
- target n-grams within rule

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Efficient computation of features from local rule context:

- Hiero SCFG rule identifier
- target n-grams within rule
- target n-gram with gaps (X) within rule

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Efficient computation of features from local rule context:

- Hiero SCFG rule identifier
- target n-grams within rule
- target n-gram with gaps (X) within rule
- binned rule counts in full training set

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Efficient computation of features from local rule context:

- Hiero SCFG rule identifier
- target n-grams within rule
- target n-gram with gaps (X) within rule
- binned rule counts in full training set
- rule length features

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Efficient computation of features from local rule context:

- Hiero SCFG rule identifier
- target n-grams within rule
- target n-gram with gaps (X) within rule
- binned rule counts in full training set
- rule length features
- rule shape features

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Efficient computation of features from local rule context:

- Hiero SCFG rule identifier
- target n-grams within rule
- target n-gram with gaps (X) within rule
- binned rule counts in full training set
- rule length features
- rule shape features
- word alignments in rules

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Efficient computation of features from local rule context:

- Hiero SCFG rule identifier
- target n-grams within rule
- target n-gram with gaps (X) within rule
- binned rule counts in full training set
- rule length features
- rule shape features
- word alignments in rules
- ... and many more!

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• ℓ_1/ℓ_2 -regularization

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- ℓ_1/ℓ_2 -regularization
 - Compute ℓ₂-norm of column vectors (= vector of examples/shards for each of *n* features), then ℓ₁-norm of resulting *n*-dimensional vector.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• ℓ_1/ℓ_2 -regularization

 Compute ℓ₂-norm of column vectors (= vector of examples/shards for each of *n* features), then ℓ₁-norm of resulting *n*-dimensional vector.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\mathbf{W}_{\mathbf{a}} : \begin{bmatrix} 4 & 0 & 0 & 3 \\ 0 & 4 & 3 & 0 \end{bmatrix} \mathbf{W}_{\mathbf{b}} : \begin{bmatrix} 4 & 3 & 0 & 0 \\ 0 & 4 & 3 & 0 \end{bmatrix} \\ 4 & 4 & 3 & 3 \to 14 \qquad 4 & 5 & 3 & 0 \to 12$$

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- ℓ_1/ℓ_2 -regularization
 - Compute l₂-norm of column vectors (= vector of examples/shards for each of *n* features), then l₁-norm of resulting *n*-dimensional vector.

 $\mathbf{W}_{\mathbf{a}} : \begin{bmatrix} 4 & 0 & 0 & 3 \\ 0 & 4 & 3 & 0 \end{bmatrix} \mathbf{W}_{\mathbf{b}} : \begin{bmatrix} 4 & 3 & 0 & 0 \\ 0 & 4 & 3 & 0 \end{bmatrix} \\ 4 & 4 & 3 & 3 \rightarrow 14 \qquad 4 & 5 & 3 & 0 \rightarrow 12$

• Effect is to choose small subset of features that are useful across all examples/shards

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Feature Selection, done properly

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

 Incremental gradient-based selection of column vectors (Obozinski, Taskar, Jordan: Joint covariant selection and joint subspace selection for multiple classification problems. Stat Comput (2010))

Feature Selection, done properly

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

 Incremental gradient-based selection of column vectors (Obozinski, Taskar, Jordan: Joint covariant selection and joint subspace selection for multiple classification problems. Stat Comput (2010))

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Feature Selection, quick and dirty

Dyer, Simianer, Riezler, Blunsom, Hasler

• Combine feature selection with averaging:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Feature Selection, quick and dirty

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- Combine feature selection with averaging:
 - Keep only those features with large enough ℓ_2 -norm computed over examples/shards.

Feature Selection, quick and dirty

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- Combine feature selection with averaging:
 - Keep only those features with large enough ℓ_2 -norm computed over examples/shards.
 - Then average feature values over examples/shards.

Dyer, Simianer, Riezler, Blunsom, Hasler

• First full training run finished!

Dyer, Simianer, Riezler, Blunsom, Hasler

- First full training run finished!
 - 150k parallel sentences from news commentary data, German-to-English

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- First full training run finished!
 - 150k parallel sentences from news commentary data, German-to-English

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• pairwise ranking perceptron

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- First full training run finished!
 - 150k parallel sentences from news commentary data, German-to-English
 - pairwise ranking perceptron
 - sample 100 translations from chart, use all $100^{\ast}(99)/2$ pairs

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- First full training run finished!
 - 150k parallel sentences from news commentary data, German-to-English
 - pairwise ranking perceptron
 - sample 100 translations from chart, use all 100*(99)/2 pairs

- OR: use n-best list
- sparse rule-id features AND/OR dense features

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

- First full training run finished!
 - 150k parallel sentences from news commentary data, German-to-English
 - pairwise ranking perceptron
 - sample 100 translations from chart, use all 100*(99)/2 pairs

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- OR: use n-best list
- sparse rule-id features AND/OR dense features
- 200 shards (25 machines with 8 cores)

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Still a lot of bugs due to integration of code from different sources

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

T₀TS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Still a lot of bugs due to integration of code from different sources

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Infrastructure is working

T₀TS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Still a lot of bugs due to integration of code from different sources

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Infrastructure is working
- Experiments still running

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Still a lot of bugs due to integration of code from different sources

- Infrastructure is working
- Experiments still running
- Sensible things happening:
 - Best rule $X \to X_1$, dass X_2 , X_1 that X_2
 - Bad rule $X \to X_1$ oder X_2 , X_1 and X_2

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Still a lot of bugs due to integration of code from different sources

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- Infrastructure is working
- Experiments still running
- Sensible things happening:
 - Best rule $X \to X_1$, dass X_2 , X_1 that X_2
 - Bad rule $X \to X_1$ oder X_2 , X_1 and X_2
- At the moment still trailing behind MERT ...

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

• Still a lot of bugs due to integration of code from different sources

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- Infrastructure is working
- Experiments still running
- Sensible things happening:
 - Best rule $X \to X_1$, dass X_2 , X_1 that X_2
 - Bad rule $X \to X_1$ oder X_2 , X_1 and X_2
- At the moment still trailing behind MERT ...
- We'll catch up!

ToTS

Dyer, Simianer, Riezler, Blunsom, Hasler

Thanks to organizers for great opportunity to learn/chat/hobnob!

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで