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Tuning SMT Systems on the Training Set

Goal: Discriminative training using sparse features on
the full training set

Approach: Picky-picky / elitist learning:

Stochastic learning with true random
selection of examples.
Feature selection according to various
regularization criteria.
Leave-one-out estimation: Leave out
sentence/shard currently being trained on
when extracting rules/features in training.
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SMT Framework + Data

cdec decoder (https://github.com/redpony/cdec)

Hiero SCFG grammars

WMT11 news-commentary corpus

132,755 parallel sentences
German-to-English
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Learning Framework: SGD for Pairwise Ranking
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Constraint Selection = Sampling of Pairs

Random sampling of pairs from full chart for pairwise
ranking:

First sample translations according to their model score.
Then sample pairs.

Sampling will diminish problem of learning to discriminate
translations that are too close (in terms of sentence-wise
approx. BLEU) to each other.

Sampling will also speed up learning.

Lots of variations on sampling possible ...
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Candidate Features

Efficient computation of features from local rule context:

Hiero SCFG rule identifier
target n-grams within rule
target n-gram with gaps (X) within rule
binned rule counts in full training set
rule length features
rule shape features
word alignments in rules

... and many more!
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Feature Selection

`1/`2-regularization

Compute `2-norm of column vectors (= vector of
examples/shards for each of n features), then `1-norm of
resulting n-dimensional vector.

Effect is to choose small subset of features that are useful
across all examples/shards
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Feature Selection, done properly

Incremental gradient-based selection of column vectors
(Obozinski, Taskar, Jordan: Joint covariant selection and
joint subspace selection for multiple classification
problems. Stat Comput (2010))
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Feature Selection, quick and dirty

Combine feature selection with averaging:

Keep only those features with large enough `2-norm
computed over examples/shards.
Then average feature values over examples/shards.
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How far did we get in a few days?

First full training run finished!

150k parallel sentences from news commentary data,
German-to-English
pairwise ranking perceptron
sample 100 translations from chart, use all 100*(99)/2
pairs
OR: use n-best list
sparse rule-id features AND/OR dense features
200 shards (25 machines with 8 cores)
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Results

Still a lot of bugs due to integration of code from different
sources

Infrastructure is working

Experiments still running

Sensible things happening:

Best rule X → X1 , dass X2, X1 that X2

Bad rule X → X1 oder X2, X1 and X2

At the moment still trailing behind MERT ...

We’ll catch up!
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Thanks

Thanks to organizers for great
opportunity to learn/chat/hobnob!


