Tuning SMT Systems on the Training Set

Chris Dyer, Patrick Simianer, Stefan Riezler, Phil Blunsom, Eva Hasler

Project Report

MT Marathon 2011
FBK Trento

Tuning SMT Systems on the Training Set

ToTS

Goal: Discriminative training using sparse features on the full training set

Tuning SMT Systems on the Training Set

ToTS

Goal: Discriminative training using sparse features on the full training set
Approach: Picky-picky / elitist learning:

Tuning SMT Systems on the Training Set

ToTS
Dyer,
Simianer
Riezler,
Blunsom
Hasler
Goal: Discriminative training using sparse features on the full training set
Approach: Picky-picky / elitist learning:

- Stochastic learning with true random selection of examples.

Tuning SMT Systems on the Training Set

ToTS
Dyer,
Simianer
Riezler,
Blunsom
Hasler
Goal: Discriminative training using sparse features on the full training set
Approach: Picky-picky / elitist learning:

- Stochastic learning with true random selection of examples.
- Feature selection according to various regularization criteria.

Tuning SMT Systems on the Training Set

ToTS
Dyer,
Simianer
Riezler,
Blunsom
Hasler
Goal: Discriminative training using sparse features on the full training set
Approach: Picky-picky / elitist learning:

- Stochastic learning with true random selection of examples.
- Feature selection according to various regularization criteria.
- Leave-one-out estimation: Leave out sentence/shard currently being trained on when extracting rules/features in training.

SMT Framework + Data

ToTS
Dyer,
Simianer,
Riezler,
Blunsom
Hasler

- cdec decoder (https://github.com/redpony/cdec)

SMT Framework + Data

ToTS
Dyer,
Simianer
Riezler,
Blunsom
Haster

- cdec decoder (https://github.com/redpony/cdec)
- Hiero SCFG grammars

SMT Framework + Data

ToTS
Dyer,
Riezler,
Blunsom,
Haster

- cdec decoder (https://github.com/redpony/cdec)
- Hiero SCFG grammars
- WMT11 news-commentary corpus

SMT Framework + Data

ToTS
Dyer,
Riezler,
Blunsom,
Haster

- cdec decoder (https://github.com/redpony/cdec)
- Hiero SCFG grammars
- WMT11 news-commentary corpus
- 132,755 parallel sentences

SMT Framework + Data

ToTS
Dyer,
Riezler,
Blunsom,
Haster

- cdec decoder (https://github.com/redpony/cdec)
- Hiero SCFG grammars
- WMT11 news-commentary corpus
- 132,755 parallel sentences
- German-to-English

Learning Framework: SGD for Pairwise Ranking

ToTS

Dyer,
Simianer,
Riezler,
Blunsom,
Hasler

```
Algorithm extended ranking voted perceptron: training
D={D\mp@subsup{D}{}{1},\ldots,\mp@subsup{D}{}{M}}:\mathrm{ Development set}
C'm}={\mp@subsup{c}{1}{m},\ldots,\mp@subsup{c}{N}{m}}:\mathrm{ the original }N\mathrm{ -best list of }\mp@subsup{D}{}{m
c _ { n } ^ { m } : n \text { -th candidate in C} C ^ { m }
X }\mp@subsup{}{}{m}={\mp@subsup{x}{1}{m},\ldots\mp@subsup{x}{N}{m}}:(\mathrm{ reordered) N-best list of D D
x _ { i } ^ { m } : i \text { -th candidate in the (reordered) N}
Ranking(W,\mp@subsup{C}{}{m}): returns N-best list of C}\mp@subsup{C}{}{m}\mathrm{ reordered
    based on the score, sm}=<W,\phi(\mp@subsup{c}{n}{m})
    \phi(\mp@subsup{x}{n}{m}): the feature vector of }\mp@subsup{x}{n}{m
W: weight vector
V={V
T: Number of pre-defined iteration
    1: For t=1,\ldots,T
    For m=1,\ldots,M;; for each sample in dev-set
        X}\mp@subsup{}{}{m}\leftarrowR\mp@code{Ranking(W,C}\mp@subsup{}{}{m}
        For }i=1,\ldots,|\mp@subsup{X}{}{m}
            For j=i+1,\ldots,|X 位
                If (BLEU (x ( m
                    &WER(xj
                    s=(BLEU(\mp@subsup{x}{j}{m})-BLEU(\mp@subsup{x}{i}{m}))
                        W=W+s*(\phi(\mp@subsup{x}{j}{m})-\phi(\mp@subsup{x}{i}{m}))
                    End_If
            End For
            End_For
            V}=
        End-For
    5: End_For
    16: Return V
```


Constraint Selection $=$ Sampling of Pairs

- Random sampling of pairs from full chart for pairwise ranking:

Constraint Selection $=$ Sampling of Pairs

ToTS

- Random sampling of pairs from full chart for pairwise ranking:
- First sample translations according to their model score.

Constraint Selection $=$ Sampling of Pairs

ToTS
Dyer,
Riezler,
Blunsom
Hasler

- Random sampling of pairs from full chart for pairwise ranking:
- First sample translations according to their model score.
- Then sample pairs.

Constraint Selection $=$ Sampling of Pairs

ToTS

- Random sampling of pairs from full chart for pairwise ranking:
- First sample translations according to their model score.
- Then sample pairs.
- Sampling will diminish problem of learning to discriminate translations that are too close (in terms of sentence-wise approx. BLEU) to each other.

Constraint Selection $=$ Sampling of Pairs

ToTS
Dyer,

- Random sampling of pairs from full chart for pairwise ranking:
- First sample translations according to their model score.
- Then sample pairs.
- Sampling will diminish problem of learning to discriminate translations that are too close (in terms of sentence-wise approx. BLEU) to each other.
- Sampling will also speed up learning.

Constraint Selection $=$ Sampling of Pairs

ToTS
Dyer,

- Random sampling of pairs from full chart for pairwise ranking:
- First sample translations according to their model score.
- Then sample pairs.
- Sampling will diminish problem of learning to discriminate translations that are too close (in terms of sentence-wise approx. BLEU) to each other.
- Sampling will also speed up learning.
- Lots of variations on sampling possible ...

Candidate Features

- Efficient computation of features from local rule context:

Candidate Features

ToTS

- Efficient computation of features from local rule context: - Hiero SCFG rule identifier

Candidate Features

ToTS
Dyer,

- Efficient computation of features from local rule context:
- Hiero SCFG rule identifier
- target n -grams within rule

Candidate Features

ToTS
Dyer,

- Efficient computation of features from local rule context:
- Hiero SCFG rule identifier
- target n-grams within rule
- target n -gram with gaps (X) within rule

Candidate Features

ToTS
Dyer,

- Efficient computation of features from local rule context:
- Hiero SCFG rule identifier
- target n-grams within rule
- target n -gram with gaps (X) within rule
- binned rule counts in full training set

Candidate Features

ToTS
Dyer,

- Efficient computation of features from local rule context:
- Hiero SCFG rule identifier
- target n-grams within rule
- target n -gram with gaps (X) within rule
- binned rule counts in full training set
- rule length features

Candidate Features

ToTS
Dyer,

- Efficient computation of features from local rule context:
- Hiero SCFG rule identifier
- target n-grams within rule
- target n -gram with gaps (X) within rule
- binned rule counts in full training set
- rule length features
- rule shape features

Candidate Features

ToTS
Dyer,

- Efficient computation of features from local rule context:
- Hiero SCFG rule identifier
- target n-grams within rule
- target n -gram with gaps (X) within rule
- binned rule counts in full training set
- rule length features
- rule shape features
- word alignments in rules

Candidate Features

ToTS
Dyer,

- Efficient computation of features from local rule context:
- Hiero SCFG rule identifier
- target n-grams within rule
- target n -gram with gaps (X) within rule
- binned rule counts in full training set
- rule length features
- rule shape features
- word alignments in rules
- ... and many more!

Feature Selection

- ℓ_{1} / ℓ_{2}-regularization

Feature Selection

ToTS
Dyer,

- ℓ_{1} / ℓ_{2}-regularization
- Compute ℓ_{2}-norm of column vectors ($=$ vector of examples/shards for each of n features), then ℓ_{1}-norm of resulting n-dimensional vector.

Feature Selection

ToTS
Dyer,

- ℓ_{1} / ℓ_{2}-regularization
- Compute ℓ_{2}-norm of column vectors ($=$ vector of examples/shards for each of n features), then ℓ_{1}-norm of resulting n-dimensional vector.

$$
\left.\begin{array}{rl}
\mathbf{W}_{\mathbf{a}}: & {\left[\begin{array}{llll}
4 & 0 & 0 & 3 \\
0 & 4 & 3 & 0
\end{array}\right] \mathbf{W}_{\mathbf{b}}:}
\end{array} \quad\left[\begin{array}{llll}
4 & 3 & 0 & 0 \\
0 & 4 & 3 & 0
\end{array}\right]\right) \text { 4 } 4 \text { 5 } 3 \rightarrow 140 \rightarrow 12
$$

Feature Selection

ToTS
Dyer,

- ℓ_{1} / ℓ_{2}-regularization
- Compute ℓ_{2}-norm of column vectors (= vector of examples/shards for each of n features), then ℓ_{1}-norm of resulting n-dimensional vector.

$$
\left.\begin{array}{rl}
\mathbf{W}_{\mathbf{a}}: & {\left[\begin{array}{llll}
4 & 0 & 0 & 3 \\
0 & 4 & 3 & 0
\end{array}\right] \quad \mathbf{W}_{\mathbf{b}}:}
\end{array} \quad\left[\begin{array}{llll}
4 & 3 & 0 & 0 \\
0 & 4 & 3 & 0
\end{array}\right]\right) \text { 4 } 4 \text { 5 } 3 \text { 3 } 0 \rightarrow 12
$$

- Effect is to choose small subset of features that are useful across all examples/shards

Feature Selection, done properly

ToTS
Dyer,

- Incremental gradient-based selection of column vectors (Obozinski, Taskar, Jordan: Joint covariant selection and joint subspace selection for multiple classification problems. Stat Comput (2010))

Feature Selection, done properly

ToTS

Dyer,

- Incremental gradient-based selection of column vectors (Obozinski, Taskar, Jordan: Joint covariant selection and joint subspace selection for multiple classification problems. Stat Comput (2010))

```
Algorithm 1 Approximate block-Lasso path
    Given \(\epsilon\) and \(\xi\),
    while \(\lambda^{t}>\lambda_{\text {min }}\) do
        Set \(j^{*}=\operatorname{argmax}_{j}\left\|\nabla_{w_{j}} J\left(W^{t}\right)\right\|\)
        Update \(w_{j^{*}}^{(t+1)}=w_{j^{*}}^{(t)}-\epsilon u^{t}\) with \(u^{t}=\frac{\nabla_{w_{j^{*}}} J}{\| \nabla_{w_{j^{*}} J \|}}\)
        \(\lambda^{t+1}=\min \left(\lambda^{t}, \frac{J\left(W^{t}\right)-J\left(W^{t+1}\right)}{\epsilon}\right)\)
        Add \(j^{*}\) to the active set
        Enforce (4) for covariates in the active set with \(\xi_{0}=\xi\).
    end while
```


Feature Selection, quick and dirty

- Combine feature selection with averaging:

Feature Selection, quick and dirty

ToTS
Dyer,
Riezler,
Blunsom,
Hasler

- Combine feature selection with averaging:
- Keep only those features with large enough ℓ_{2}-norm computed over examples/shards.

Feature Selection, quick and dirty

ToTS
Dyer,

Hasler

- Combine feature selection with averaging:
- Keep only those features with large enough ℓ_{2}-norm computed over examples/shards.
- Then average feature values over examples/shards.

How far did we get in a few days?

- First full training run finished!

How far did we get in a few days?

ToTS
Dyer,

- First full training run finished!
- 150k parallel sentences from news commentary data, German-to-English

How far did we get in a few days?

ToTS
Dyer,

- First full training run finished!
- 150k parallel sentences from news commentary data, German-to-English
- pairwise ranking perceptron

How far did we get in a few days?

ToTS
Dyer,

- First full training run finished!
- 150k parallel sentences from news commentary data, German-to-English
- pairwise ranking perceptron
- sample 100 translations from chart, use all $100^{*}(99) / 2$ pairs

How far did we get in a few days?

ToTS
Dyer,

- First full training run finished!
- 150k parallel sentences from news commentary data, German-to-English
- pairwise ranking perceptron
- sample 100 translations from chart, use all $100^{*}(99) / 2$ pairs
- OR: use n-best list
- sparse rule-id features AND/OR dense features

How far did we get in a few days?

ToTS
Dyer,
Simianer
Riezler,
Blunsom,
Hasler

- First full training run finished!
- 150k parallel sentences from news commentary data, German-to-English
- pairwise ranking perceptron
- sample 100 translations from chart, use all $100^{*}(99) / 2$ pairs
- OR: use n-best list
- sparse rule-id features AND/OR dense features
- 200 shards (25 machines with 8 cores)

Results

- Still a lot of bugs due to integration of code from different sources

Results

ToTS

- Still a lot of bugs due to integration of code from different sources
- Infrastructure is working

Results

ToTS

- Still a lot of bugs due to integration of code from different sources
- Infrastructure is working
- Experiments still running

Results

ToTS
Dyer,

- Still a lot of bugs due to integration of code from different sources
- Infrastructure is working
- Experiments still running
- Sensible things happening:
- Best rule $X \rightarrow X_{1}$, dass X_{2}, X_{1} that X_{2}
- Bad rule $X \rightarrow X_{1}$ oder X_{2}, X_{1} and X_{2}

Results

ToTS
Dyer,

- Still a lot of bugs due to integration of code from different sources
- Infrastructure is working
- Experiments still running
- Sensible things happening:
- Best rule $X \rightarrow X_{1}$, dass X_{2}, X_{1} that X_{2}
- Bad rule $X \rightarrow X_{1}$ oder X_{2}, X_{1} and X_{2}
- At the moment still trailing behind MERT ...

Results

ToTS
Dyer,

- Still a lot of bugs due to integration of code from different sources
- Infrastructure is working
- Experiments still running
- Sensible things happening:
- Best rule $X \rightarrow X_{1}$, dass X_{2}, X_{1} that X_{2}
- Bad rule $X \rightarrow X_{1}$ oder X_{2}, X_{1} and X_{2}
- At the moment still trailing behind MERT ...
- We'll catch up!

Thanks

ToTS
Dyer,
Simianer
Riezler,
Blunsom
Hasler

Thanks to organizers for great opportunity to learn/chat/hobnob!

