Related Work		Conclusion

Multi-Task Learning for Improved Discriminative Training in SMT

Patrick Simianer and Stefan Riezler

Department of Computational Linguistics, Heidelberg University, Germany

Learning from Big Data in SMT

- Machine learning theory and practice suggests benefits from using expressive feature representations and from tuning on large training samples.
- Discriminative training in SMT has mostly been content with tuning small sets of dense features on small development data (Och NAACL'03).
- Notable exceptions and recent success stories using larger feature and training sets:
 - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL'06: 35M feats, 230K sents.
 - Blunsom et al. ACL'08: 7.8M feats, 100K sents.
 - Simianer, Riezler, Dyer ACL'12: 4.7M feats, 1.6M sents.
 - Flanigan, Dyer, Carbonell NAACL'13: 28.8M feats, 1M sents.

Learning from Big Data in SMT

- Machine learning theory and practice suggests benefits from using expressive feature representations and from tuning on large training samples.
- Discriminative training in SMT has mostly been content with tuning small sets of dense features on small development data (Och NAACL'03).
- Notable exceptions and recent success stories using larger feature and training sets:
 - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL'06: 35M feats, 230K sents.
 - Blunsom et al. ACL'08: 7.8M feats, 100K sents.
 - Simianer, Riezler, Dyer ACL'12: 4.7M feats, 1.6M sents.
 - Flanigan, Dyer, Carbonell NAACL'13: 28.8M feats, 1M sents.

Learning from Big Data in SMT

- Machine learning theory and practice suggests benefits from using expressive feature representations and from tuning on large training samples.
- Discriminative training in SMT has mostly been content with tuning small sets of dense features on small development data (Och NAACL'03).
- Notable exceptions and recent success stories using larger feature and training sets:
 - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL'06: 35M feats, 230K sents.
 - Blunsom et al. ACL'08: 7.8M feats, 100K sents.
 - Simianer, Riezler, Dyer ACL'12: 4.7M feats, 1.6M sents.
 - Flanigan, Dyer, Carbonell NAACL'13: 28.8M feats, 1M sents.

Framework: Multi-Task Learning

- **Goal:** A number of statistical models need to be estimated simultaneously from data belonging to different tasks.
- Examples:
 - OCR of handwritten characters from different writers: Exploit commonalities on pixel- or stroke-level shared between writers.
 - LTR from search engine query logs from different countries: Some queries are country-specific ("football"), most preference rankings are shared across countries.
- Idea:
 - Learn a shared model that takes advantage of commonalities among tasks, without neglecting individual knowledge.
 - Problem of simultaneous learning is harder, but it also offers possibility of knowledge sharing.

Framework: Multi-Task Learning

- **Goal:** A number of statistical models need to be estimated simultaneously from data belonging to different tasks.
- Examples:
 - OCR of handwritten characters from different writers: Exploit commonalities on pixel- or stroke-level shared between writers.
 - LTR from search engine query logs from different countries: Some queries are country-specific ("football"), most preference rankings are shared across countries.
- Idea:
 - Learn a shared model that takes advantage of commonalities among tasks, without neglecting individual knowledge.
 - Problem of simultaneous learning is harder, but it also offers possibility of knowledge sharing.

Framework: Multi-Task Learning

- **Goal:** A number of statistical models need to be estimated simultaneously from data belonging to different tasks.
- Examples:
 - OCR of handwritten characters from different writers: Exploit commonalities on pixel- or stroke-level shared between writers.
 - LTR from search engine query logs from different countries: Some queries are country-specific ("football"), most preference rankings are shared across countries.

Idea:

- Learn a shared model that takes advantage of commonalities among tasks, without neglecting individual knowledge.
- Problem of simultaneous learning is harder, but it also offers possibility of knowledge sharing.

Multi-Task Distributed SGD for Discriminative SMT

- **Idea:** Take advantage of algorithms designed for hard problems to ease discriminative SMT on big data.
 - Distribute work,
 - learn efficiently on each example,
 - share information.
- Method:
 - **Distributed learning** using Hadoop/MapReduce or Sun Grid Engine.
 - Online learning via Stochastic Gradient Descent optimization.
 - Feature selection via ℓ_1/ℓ_2 block norm regularization on features across multiple tasks.

Multi-Task Distributed SGD for Discriminative SMT

- **Idea:** Take advantage of algorithms designed for hard problems to ease discriminative SMT on big data.
 - Distribute work,
 - · learn efficiently on each example,
 - share information.
- Method:
 - **Distributed learning** using Hadoop/MapReduce or Sun Grid Engine.
 - Online learning via Stochastic Gradient Descent optimization.
 - Feature selection via ℓ_1/ℓ_2 block norm regularization on features across multiple tasks.

Related Work		Conclusion

Related Work

Online learning:

- We deploy pairwise ranking perceptron (Shen & Joshi JMLR'05)
- and margin perceptron (Collobert & Bengio ICML'04).

Distributed learning:

- Without feature selection, our algorithm reduces to Iterative Mixing (McDonald et al. NAACL'10),
- which itself is related to Bagging (Breiman JMLR'96) if shards are treated as random samples.

Related Work		Conclusion

Related Work

Online learning:

- We deploy pairwise ranking perceptron (Shen & Joshi JMLR'05)
- and margin perceptron (Collobert & Bengio ICML'04).

Distributed learning:

- Without feature selection, our algorithm reduces to Iterative Mixing (McDonald et al. NAACL'10),
- which itself is related to Bagging (Breiman JMLR'96) if shards are treated as random samples.

Related Work		Conclusion

Related Work

• l₁/l₂ regularization:

- Related to group-Lasso approaches which use mixed norms (Yuan & Lin JRSS'06), hierarchical norms (Zhao et al. Annals Stats'09), structured norms (Martins et al. EMNLP'11).
- Difference: Norms and proximity operators are applied to groups of features in single regression or classification task – multi-task learning groups features orthogonally by tasks.
- Closest relation to Obozinski et al. StatComput'10: Our algorithm is weight-based backward feature elimination variant of their gradient-based forward feature selection algorithm.

- Preference pairs $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$ where $\mathbf{x}_j^{(1)}$ is ordered above $\mathbf{x}_j^{(2)}$ w.r.t. sentence-wise BLEU (Nakov et al. COLING'12).
- Hinge loss-type objective

 $\mathit{l}_{j}(\mathbf{w}) = (-\left< \mathbf{w}, \bar{\mathbf{x}}_{j} \right>)_{+}$

where $\bar{\mathbf{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$, $(a)_+ = \max(0, a)$, $\mathbf{w} \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle \leq \mathbf{0}, \ \mathbf{0} & ext{else.} \end{cases}$$

- Preference pairs $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$ where $\mathbf{x}_j^{(1)}$ is ordered above $\mathbf{x}_j^{(2)}$ w.r.t. sentence-wise BLEU (Nakov et al. COLING'12).
- Hinge loss-type objective

$$l_j(\mathbf{w}) = (- \langle \mathbf{w}, ar{\mathbf{x}}_j
angle)_+$$

where $\mathbf{\bar{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$, $(a)_+ = \max(0, a)$, $\mathbf{w} \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle \leq \mathbf{0}, \ \mathbf{0} & ext{else.} \end{cases}$$

- Preference pairs $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$ where $\mathbf{x}_j^{(1)}$ is ordered above $\mathbf{x}_j^{(2)}$ w.r.t. sentence-wise BLEU (Nakov et al. COLING'12).
- Hinge loss-type objective

$$l_j(\mathbf{w}) = (- \langle \mathbf{w}, \bar{\mathbf{x}}_j \rangle)_+$$

where $\mathbf{\bar{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$, $(a)_+ = \max(0, a)$, $\mathbf{w} \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle \leq 0, \ 0 & ext{else.} \end{cases}$$

OL framework: Margin Perceptron

Hinge loss-type objective

$$I_j(\mathbf{w}) = (1 - \langle \mathbf{w}, \bar{\mathbf{x}}_j \rangle)_+$$

Stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle < 1, \ 0 & ext{else.} \end{cases}$$

- Margin term controls capacity, but results in more updates.
- Collobert & Bengio (ICML'04) argue that this justifies not using an explicit regularization (as for example in an SGD version of the SVM (Shalev-Shwartz et al. ICML'07)).

OL framework: Margin Perceptron

Hinge loss-type objective

$$I_j(\mathbf{w}) = (1 - \langle \mathbf{w}, \bar{\mathbf{x}}_j \rangle)_+$$

• Stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle < 1, \ 0 & ext{else.} \end{cases}$$

- Margin term controls capacity, but results in more updates.
- Collobert & Bengio (ICML'04) argue that this justifies not using an explicit regularization (as for example in an SGD version of the SVM (Shalev-Shwartz et al. ICML'07)).

OL framework: Margin Perceptron

Hinge loss-type objective

$$I_j(\mathbf{w}) = (1 - \langle \mathbf{w}, \bar{\mathbf{x}}_j \rangle)_+$$

• Stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle < 1, \ 0 & ext{else.} \end{cases}$$

- Margin term controls capacity, but results in more updates.
- Collobert & Bengio (ICML'04) argue that this justifies not using an explicit regularization (as for example in an SGD version of the SVM (Shalev-Shwartz et al. ICML'07)).

MTL Framework: ℓ_1/ℓ_2 Block Norm Regularization

Data points {(*x_{zn}*, *y_{zn}*), *z* = 1,..., *Z*, *n* = 1,..., *N_z*}, sampled from *P_z* on *X* × *Y* (*z* = task; *n* = data point).

• Objective:

 $\min_{\mathbf{W}}\sum_{z,n}I_n(\mathbf{w}_z)+\lambda\|\mathbf{W}\|_{1,2}$

 where W = (w^d_z)_{z,d} is a Z-by-D matrix W = (w^d_z)_{z,d} of D-dimensional row vectors w_z and Z-dimensional column vectors w^d of weights associated with feature d across tasks.

Weighted l₁/l₂ norm:

$$\lambda \|\mathbf{W}\|_{1,2} = \lambda \sum_{d=1}^{D} \|\mathbf{w}^{d}\|_{2}$$

 Each l₂ norm of a weight column w^d represents the relevance of the corresponding feature across tasks.

MTL Framework: ℓ_1/ℓ_2 Block Norm Regularization

- Data points { $(x_{zn}, y_{zn}), z = 1, ..., Z, n = 1, ..., N_z$ }, sampled from P_z on $X \times Y$ (z =task; n =data point).
- Objective:

$$\min_{\mathbf{W}}\sum_{z,n}I_n(\mathbf{w}_z)+\lambda\|\mathbf{W}\|_{1,2}$$

- where W = (w^d_z)_{z,d} is a Z-by-D matrix W = (w^d_z)_{z,d} of D-dimensional row vectors w_z and Z-dimensional column vectors w^d of weights associated with feature d across tasks.
- Weighted l₁/l₂ norm:

$$\lambda \|\mathbf{W}\|_{1,2} = \lambda \sum_{d=1}^{D} \|\mathbf{w}^{d}\|_{2}$$

 Each l₂ norm of a weight column w^d represents the relevance of the corresponding feature across tasks.

MTL Framework: ℓ_1/ℓ_2 Block Norm Regularization

- Data points { $(x_{zn}, y_{zn}), z = 1, ..., Z, n = 1, ..., N_z$ }, sampled from P_z on $X \times Y$ (z =task; n =data point).
- Objective:

$$\min_{\mathbf{W}}\sum_{z,n}I_n(\mathbf{w}_z)+\lambda\|\mathbf{W}\|_{1,2}$$

- where W = (w^d_z)_{z,d} is a Z-by-D matrix W = (w^d_z)_{z,d} of D-dimensional row vectors w_z and Z-dimensional column vectors w^d of weights associated with feature d across tasks.
- Weighted ℓ_1/ℓ_2 norm:

$$\lambda \| \mathbf{W} \|_{1,2} = \lambda \sum_{d=1}^{D} \| \mathbf{w}^{d} \|_{2}$$

 Each l₂ norm of a weight column w^d represents the relevance of the corresponding feature across tasks.

					Alg	gorithm	S								Conclusion
ℓ_1/ℓ_2 Regu	lariza	tio	n E	xpl	ain	ed									
		\mathbf{w}^1	\mathbf{w}^2	\mathbf{w}^3	\mathbf{w}^4	\mathbf{w}^5		1	\mathbf{w}^1	\mathbf{w}^2	\mathbf{w}^3	\mathbf{w}^4	\mathbf{w}^5		
	\mathbf{w}_{z_1} [6	4	0	0	0]	[6	4	0	0	0]	
	\mathbf{w}_{z_2} [0	0	3	0	0]	[3	0	0	0	0]	
	\mathbf{w}_{z_3} [0	0	0	2	3]] [2	3	0	0	0]	
column l ₂	norm:	6	4	3	2	3			7	5	0	0	0		

 \$\ell_1\$ sum of \$\ell_2\$ norms encourages several feature columns \$\mu^d\$ to be \$\mu\$ and others to have high weights across tasks.

18

• Algorithm idea:

 ℓ_1 sum:

- Contribution to loss reduction must outweigh regularizer penalty in order to activate feature by non-zero weight.
- Weight-based feature elimination criterion:

If $\|\mathbf{w}^{d}\|_{2} \leq \lambda$, set $\mathbf{W}[z][d] = 0, \forall z$.

Implementation by threshold on K features or by threshold λ.

12

	Related Work			Alg	Algorithms Exp								Conclusion		
ℓ_1/ℓ_2 Regularization Explained															
		\mathbf{w}^1	\mathbf{w}^2	\mathbf{w}^3	\mathbf{w}^4	\mathbf{w}^5			\mathbf{w}^1	\mathbf{w}^2	\mathbf{w}^3	\mathbf{w}^4	\mathbf{w}^5		
	\mathbf{w}_{z_1} [6	4	0	0	0]	[6	4	0	0	0]	
	\mathbf{w}_{z_2}	0	0	3	0	0]	[3	0	0	0	0]	
	\mathbf{w}_{z_3} [0	0	0	2	3]] [2	3	0	0	0]	
column ℓ_2	norm:	6	4	3	2	3			7	5	0	0	0		
	ℓ_1 sum:					\Rightarrow	18						\Rightarrow	12	

 \$\ell_1\$ sum of \$\ell_2\$ norms encourages several feature columns \$\mu^d\$ to be \$\mu\$ and others to have high weights across tasks.

Algorithm idea:

- Contribution to loss reduction must outweigh regularizer penalty in order to activate feature by non-zero weight.
- Weight-based feature elimination criterion:

If
$$\|\mathbf{w}^d\|_2 \leq \lambda$$
, set $\mathbf{W}[z][d] = 0, \forall z$.

• Implementation by threshold on K features or by threshold λ .

Implementation as Feature Selection Algorithm

Algorithm 1 Multi-task Distributed SGD

```
Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize \mathbf{v} \leftarrow \mathbf{0}.
for epochs t \leftarrow 0 \dots T - 1: do
     for all tasks z \in \{1 \dots Z\}: parallel do
          \mathbf{W}_{z,t,0,0} \leftarrow \mathbf{V}
          for all sentences i \in \{0 \dots S - 1\}: do
                Decode i<sup>th</sup> input with \mathbf{w}_{z,t,i,0}.
                for all pairs i \in \{0 \dots P - 1\}: do
                     \mathbf{w}_{z,t,i,i+1} \leftarrow \tilde{\mathbf{w}}_{z,t,i,i} - \eta \nabla l_i(\mathbf{w}_{z,t,i,i})
                end for
                \mathbf{W}_{z,t,i+1,0} \leftarrow \mathbf{W}_{z,t,i,P}
          end for
     end for
     Stack weights \mathbf{W} \leftarrow [\mathbf{w}_{1,t,S,0}] \dots |\mathbf{w}_{Z,t,S,0}|^T
     Select top K feature columns of W by \ell_2 norm
     for k \leftarrow 1 \dots K do
          \mathbf{v}[k] = \frac{1}{Z} \sum_{\tau=1}^{Z} \mathbf{W}[z][k]
     end for
end for
return v
```

Experiments: Random vs. Natural Tasks

• Research Question:

- As shown in earlier work (Simianer, Riezler, Dyer ACL'12), multi-task learning can be used as general regularization technique on **random shards**.
- Can multi-task learning benefit from natural task structure in the data, where shared and individual knowledge is properly balanced?

Experiments: Random vs. Natural Tasks

Research Question:

- As shown in earlier work (Simianer, Riezler, Dyer ACL'12), multi-task learning can be used as general regularization technique on **random shards**.
- Can multi-task learning benefit from **natural task structure** in the data, where shared and individual knowledge is properly balanced?

	Related Work	Experiments	Conclusion
Data			

- A Human Necessities
- B Performing Operations, Transporting
- C Chemistry, Metallurgy
- D Textiles, Paper
- E Fixed Constructions
- F Mechanical Engineering, Lighting, Heating, Weapons
- G Physics
- H Electricity
- International Patent Classification (IPC) categorizes patents hierarchically into eight sections, 120 classes, 600 subclasses, down to 70,000 subgroups at the leaf level.
- Typically, a patent belongs to more than one section, with one section chosen as main classification.
- Eight top classes/sections used to define **natural tasks**.

	Related Work		Experiments	Conclusion
SMT Setup				
(((1) $X \rightarrow X_1$ hat X_2 v (2) $X \rightarrow X_1$ hat mir X_1 promi (3) $X \rightarrow X_1$ versprace	Versprochen; X_1 proves X_2 versprochen; sed me X_2 where X_2 is the two sets X_2 ; X_1 promised	omised X ₂ 1 X ₂	

 Hierarchical phrase-based translation (Chiang CL'07), formalizes translation rules as productions of synchronous context-free grammar (SCFG).

• Features in discriminative training:

- **Rule identifiers** for SCFG productions Examples: rule (1), (2) and (3)
- Rule n-gram features in source and target Examples: "X hat", "hat X", "X versprochen"
- Rule shape features
 Examples: (NT, term*, NT, term*; NT, term*, NT) for (1), ((NT, term*, NT; NT, term*, NT) for rule (3).

	Related Work		Experiments	Conclusion
SMT Setup				
()	(1) $X \to X_1$ hat X_2 (2) $X \to X_1$ hat mir X_1 prom (3) $X \to X_1$ verspra	versprochen; X_1 pr X_2 versprochen; ised me X_2 ch X_2 ; X_1 promised	omised X ₂ d X ₂	

- Hierarchical phrase-based translation (Chiang CL'07), formalizes translation rules as productions of synchronous context-free grammar (SCFG).
- Features in discriminative training:
 - **Rule identifiers** for SCFG productions Examples: rule (1), (2) and (3)
 - Rule n-gram features in source and target Examples: "X hat", "hat X", "X versprochen"

Rule shape features

Examples: (NT, term*, NT, term*; NT, term*, NT) for (1), (2); (NT, term*, NT; NT, term*, NT) for rule (3).

MERT Baseline w/ 12 Dense Features

	single-task tuning							
	indep. ⁰	pooled 1	pooled-cat $^{\rm 2}$					
pooled test	-	51.18	51.22					
A	54.92	⁰² 55.27	⁰ 55.17					
В	51.53	51.48	⁰¹ 51.69					
С	¹² 56.31	² 55.90	55.74					
D	49.94	⁰ 50.33	⁰ 50.26					
E	¹ 49.19	48.97	¹ 49.13					
F	¹² 51.26	51.02	51.12					
G	¹ 49.61	49.44	49.55					
Н	49.38	49.50	⁰¹ 49.67					
average test	51.52	51.49	51.54					

- Neither tuning on *pooled* or *pooled-cat* improves over *indep*..
- $x \in \{0,1,2\}$ BLEU denotes statistical significance of pairwise test.
- Tuning was repeated 3 times and BLEU scores averaged.

Single-Task Perceptron w/ ℓ_1 Regularization

	single-task tuning						
	indep. ⁰	pooled 1	pooled-cat ²				
pooled test	-	50.75	¹ 52.08				
А	¹ 55.11	54.32	⁰¹ 55.94				
В	¹ 52.61	50.84	¹ 52.57				
С	56.18	56.11	⁰¹ 56.75				
D	¹ 50.68	49.48	⁰¹ 51.22				
Е	¹ 50.27	48.69	¹ 50.01				
F	¹ 51.68	50.71	¹ 51.95				
G	¹ 49.90	49.06	⁰¹ 50.51				
Н	¹ 50.48	49.16	¹ 50.53				
average test	52.11	51.05	52.44				
model size	430,092.5	457,428	1,574,259				

- Improvements over MERT, mostly on pooled-cat tuning set.
- 1.5M features make serial tuning on *pooled-cat* infeasible.
- Overfitting effect on small *pooled* data.

Single- and Multi-Task Perceptron

	si	ngle-task tu	ning	multi-task tuning			
	indep. ⁰	pooled ¹	pooled-cat $^{\rm 2}$	IPC ³	sharding 4	resharding 5	
pooled test	-	51.33	1 51.77	¹² 52.56	¹² 52.54	12 52.60	
A	54.79	54.76	⁰¹ 55.31	012 56.35	⁰¹² 56.22	⁰¹² 56.21	
В	12 52.45	51.30	¹ 52.19	⁰¹² 52.78	0123 52.98	⁰¹² 52.96	
С	² 56.62	56.65	¹ 56.12	01245 57.76	⁰¹² 57.30	⁰¹² 57.44	
D	¹ 50.75	49.88	¹ 50.63	01245 51.54	⁰¹² 51.33	⁰¹² 51.20	
Е	1 49.70	49.23	⁰¹ 49.92	⁰¹² 50.51	⁰¹² 50.52	⁰¹² 50.38	
F	¹ 51.60	51.09	¹ 51.71	⁰¹² 52.28	⁰¹² 52.43	⁰¹² 52.32	
G	¹ 49.50	49.06	⁰¹ 49.97	012 50.84	⁰¹² 50.88	⁰¹² 50.74	
Н	¹ 49.77	49.50	⁰¹ 50.64	⁰¹² 51.16	⁰¹² 51.07	⁰¹² 51.10	
average test	51.90	51.42	52.06	52.90	52.84	52.79	
model size	366,869.4	448,359	1,478,049	100,000	100,000	100,000	

- Multi-task tuning improves BLEU over all single-task runs.
- Also more efficient due to iterative feature selection.
- Difference between natural and random tasks inconclusive.

Single- and Multi-Task Margin Perceptron

	single-task tuning			multi-task tuning		
	indep. ⁰	pooled 1	pooled-cat ²	IPC ³	sharding 4	resharding 5
pooled test	-	51.33	¹ 52.58	¹² 52.98	¹² 52.95	¹² 52.99
А	¹ 56.09	55.33	¹ 55.92	0124556.78	⁰¹² 56.62	⁰¹² 56.53
В	¹ 52.45	51.59	¹ 52.44	⁰¹² 53.31	⁰¹² 53.35	⁰¹² 53.21
С	¹ 57.20	56.85	⁰¹ 57.54	⁰¹ 57.46	¹ 57.42	¹ 57.43
D	¹ 50.51	50.18	⁰¹ 51.38	⁰¹²⁴⁵ 52.14	0125 51.82	⁰¹² 51.66
Е	¹ 50.27	49.36	⁰¹ 50.72	⁰¹²⁴ 51.13	⁰¹² 50.89	⁰¹² 51.02
F	¹ 52.06	51.20	⁰¹ 52.61	⁰¹²⁴⁵ 53.07	⁰¹² 52.80	⁰¹² 52.87
G	¹ 50.00	49.58	⁰¹ 50.90	⁰¹²⁴⁵ 51.36	⁰¹² 51.19	⁰¹² 51.11
Н	¹ 50.57	49.80	⁰¹ 51.32	⁰¹² 51.57	⁰¹² 51.62	⁰¹ 51.47
average test	52.39	51.74	52.85	53.35	53.21	53.16
model size	423,731.5	484,483	1,697,398	100,000	100,000	100,000

- Single-task runs beat standard perceptron w/ and w/o ℓ_1 .
- Regularization by margin and multi-task learning adds up.
- Best result is nearly 2 BLEU points better than MERT.

	Related Work		Conclusion
Conclusio			
Conclusio	n		

- Multi-task learning for SMT is efficient due to online learning, parallelization and feature selection,
 - but also effective in terms of BLEU improvements over single-task learning.
 - Multi-task distributed learning is **easy to implement as wrapper** around perceptron.

Future Work: Task Adaption

- Natural tasks are slightly advantageous over random tasks.
- Goal: Adapt task definition to SMT problem.
 - Explore various similarity metrics on IPC subclasses,
 - jointly optimize task partitioning and SMT performance.

Future Work: Adaptive Regularization

Algorithm 2 Path-Following Multi-task Distributed SGD

```
Get data for Z tasks, each including S sentences; distribute to machines.
Initialize \mathbf{v} \leftarrow \mathbf{0}; \lambda_0, \lambda_{\min}, \epsilon.
for epochs t \leftarrow 0 \dots T - 1: do
     for all tasks z \in \{1 \dots Z\}: parallel do
          Perform task-specific learning
     end for
     Stack weights \mathbf{W} \leftarrow [\mathbf{w}_{1,t,S,0}| \dots |\mathbf{w}_{Z,t,S,0}]^T
     for feature columns d \in \{1 \dots D\} in W: do
          if \|\mathbf{w}^d\|_2 < \lambda_t then
               v[\ddot{d}] = 0
          else
               \mathbf{v}[d] = \frac{1}{Z} \sum_{i=1}^{Z} \mathbf{W}[z][d]
          end if
     end for
     Set \lambda_{t+1} = \min\{\lambda_t, \frac{\sum_{z,i,j}(l_{z,i,j}(\mathbf{v}_{t-1}) - l_{z,i,j}(\mathbf{v}_t))}{2}\}
     if \lambda_{t+1} < \lambda_{\min} then
          break
     end if
end for
return v
```

Related Work		Conclusion

Thanks for your attention!

dtrain codebase is part of cdec: https://github.com/redpony/cdec.