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Introduction Related Work Algorithms Experiments Conclusion

Learning from Big Data in SMT

• Machine learning theory and practice suggests benefits from
using expressive feature representations and from tuning
on large training samples.

• Discriminative training in SMT has mostly been content with
tuning small sets of dense features on small development
data (Och NAACL’03).

• Notable exceptions and recent success stories using larger
feature and training sets:

• Liang et al. ACL’06: 1.5M features, 67K parallel sentences.
• Tillmann and Zhang ACL’06: 35M feats, 230K sents.
• Blunsom et al. ACL’08: 7.8M feats, 100K sents.
• Simianer, Riezler, Dyer ACL’12: 4.7M feats, 1.6M sents.
• Flanigan, Dyer, Carbonell NAACL’13: 28.8M feats, 1M sents.
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Introduction Related Work Algorithms Experiments Conclusion

Framework: Multi-Task Learning

• Goal: A number of statistical models need to be estimated
simultaneously from data belonging to different tasks.

• Examples:
• OCR of handwritten characters from different writers: Exploit

commonalities on pixel- or stroke-level shared between writers.
• LTR from search engine query logs from different countries:

Some queries are country-specific (“football”), most preference
rankings are shared across countries.

• Idea:
• Learn a shared model that takes advantage of commonalities

among tasks, without neglecting individual knowledge.
• Problem of simultaneous learning is harder, but it also offers

possibility of knowledge sharing.
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Multi-Task Distributed SGD for Discriminative SMT

• Idea: Take advantage of algorithms designed for hard
problems to ease discriminative SMT on big data.

• Distribute work,
• learn efficiently on each example,
• share information.

• Method:
• Distributed learning using Hadoop/MapReduce or Sun Grid

Engine.
• Online learning via Stochastic Gradient Descent optimization.
• Feature selection via `1/`2 block norm regularization on

features across multiple tasks.
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Related Work

• Online learning:
• We deploy pairwise ranking perceptron (Shen & Joshi

JMLR’05)
• and margin perceptron (Collobert & Bengio ICML’04).

• Distributed learning:
• Without feature selection, our algorithm reduces to Iterative

Mixing (McDonald et al. NAACL’10),
• which itself is related to Bagging (Breiman JMLR’96) if shards

are treated as random samples.
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Related Work

• `1/`2 regularization:
• Related to group-Lasso approaches which use mixed norms

(Yuan & Lin JRSS’06), hierarchical norms (Zhao et al. Annals
Stats’09), structured norms (Martins et al. EMNLP’11).

• Difference: Norms and proximity operators are applied to
groups of features in single regression or classification task –
multi-task learning groups features orthogonally by tasks.

• Closest relation to Obozinski et al. StatComput’10: Our
algorithm is weight-based backward feature elimination variant
of their gradient-based forward feature selection algorithm.
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OL Framework: Pairwise Ranking Perceptron

• Preference pairs xj = (x(1)
j , x(2)

j ) where x(1)
j is ordered above

x(2)
j w.r.t. sentence-wise BLEU (Nakov et al. COLING’12).

• Hinge loss-type objective

lj(w) = (−〈w, x̄j 〉)+

where x̄j = x(1)
j − x(2)

j , (a)+ = max(0, a) , w ∈ IRD is a weight
vector, and 〈·, ·〉 denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 ≤ 0,

0 else.
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OL framework: Margin Perceptron

• Hinge loss-type objective

lj(w) = (1− 〈w, x̄j 〉)+

• Stochastic subgradient descent:

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 < 1,

0 else.

• Margin term controls capacity, but results in more updates.

• Collobert & Bengio (ICML’04) argue that this justifies not using
an explicit regularization (as for example in an SGD version of
the SVM (Shalev-Shwartz et al. ICML’07)).
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MTL Framework: `1/`2 Block Norm Regularization
• Data points {(xzn, yzn), z = 1, . . . ,Z , n = 1, . . . ,Nz},

sampled from Pz on X × Y (z = task; n = data point).
• Objective:

min
W

∑
z,n

ln(wz) + λ||W||1,2

• where W = (wd
z )z,d is a Z -by-D matrix W = (wd

z )z,d of
D-dimensional row vectors wz and Z -dimensional column
vectors wd of weights associated with feature d across tasks.

• Weighted `1/`2 norm:

λ||W||1,2 = λ

D∑
d=1

||wd ||2

• Each `2 norm of a weight column wd represents the relevance
of the corresponding feature across tasks.
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`1/`2 Regularization Explained
w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

wz1 [ 6 4 0 0 0 ] [ 6 4 0 0 0 ]
wz2 [ 0 0 3 0 0 ] [ 3 0 0 0 0 ]
wz3 [ 0 0 0 2 3 ] [ 2 3 0 0 0 ]

column `2 norm: 6 4 3 2 3 7 5 0 0 0
`1 sum: ⇒ 18 ⇒ 12

• `1 sum of `2 norms encourages several feature columns wd to
be 0 and others to have high weights across tasks.

• Algorithm idea:
• Contribution to loss reduction must outweigh regularizer

penalty in order to activate feature by non-zero weight.
• Weight-based feature elimination criterion:

If ||wd ||2 ≤ λ, set W[z][d ] = 0,∀z.

• Implementation by threshold on K features or by threshold λ.
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Implementation as Feature Selection Algorithm

Algorithm 1 Multi-task Distributed SGD
Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize v← 0.
for epochs t ← 0 . . . T − 1: do

for all tasks z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all sentences i ∈ {0 . . .S − 1}: do

Decode i th input with wz,t,i,0.
for all pairs j ∈ {0 . . .P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j )
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for
Stack weights W← [w1,t,S,0| . . . |wZ ,t,S,0]

T

Select top K feature columns of W by `2 norm
for k ← 1 . . .K do

v[k ] = 1
Z

Z∑
z=1

W[z][k ]

end for
end for
return v
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Experiments: Random vs. Natural Tasks

• Research Question:
• As shown in earlier work (Simianer, Riezler, Dyer ACL’12),

multi-task learning can be used as general regularization
technique on random shards.

• Can multi-task learning benefit from natural task structure in
the data, where shared and individual knowledge is properly
balanced?
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Data

A Human Necessities
B Performing Operations, Transporting
C Chemistry, Metallurgy
D Textiles, Paper
E Fixed Constructions
F Mechanical Engineering, Lighting,

Heating, Weapons
G Physics
H Electricity

• International Patent Classification (IPC) categorizes patents
hierarchically into eight sections, 120 classes, 600
subclasses, down to 70,000 subgroups at the leaf level.

• Typically, a patent belongs to more than one section, with one
section chosen as main classification.

• Eight top classes/sections used to define natural tasks.
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SMT Setup

(1) X → X1 hat X2 versprochen; X1 promised X2

(2) X → X1 hat mir X2 versprochen;
X1 promised me X2

(3) X → X1 versprach X2; X1 promised X2

• Hierarchical phrase-based translation (Chiang CL’07),
formalizes translation rules as productions of synchronous
context-free grammar (SCFG).

• Features in discriminative training:
• Rule identifiers for SCFG productions

Examples: rule (1), (2) and (3)
• Rule n-gram features in source and target

Examples: “X hat”, “hat X ”, “X versprochen”
• Rule shape features

Examples: (NT, term∗, NT, term∗; NT, term∗, NT) for (1), (2);
(NT, term∗, NT; NT, term∗, NT) for rule (3).
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MERT Baseline w/ 12 Dense Features
single-task tuning

indep. 0 pooled 1 pooled-cat 2

pooled test – 51.18 51.22

A 54.92 0255.27 055.17
B 51.53 51.48 0151.69
C 1256.31 255.90 55.74
D 49.94 050.33 050.26
E 149.19 48.97 149.13
F 1251.26 51.02 51.12
G 149.61 49.44 49.55
H 49.38 49.50 0149.67

average test 51.52 51.49 51.54

• Neither tuning on pooled or pooled-cat improves over indep..

• x⊂{0,1,2}BLEU denotes statistical significance of pairwise test.

• Tuning was repeated 3 times and BLEU scores averaged.
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Single-Task Perceptron w/ `1 Regularization
single-task tuning

indep. 0 pooled 1 pooled-cat 2

pooled test – 50.75 1 52.08

A 1 55.11 54.32 01 55.94
B 1 52.61 50.84 1 52.57
C 56.18 56.11 01 56.75
D 1 50.68 49.48 01 51.22
E 1 50.27 48.69 1 50.01
F 1 51.68 50.71 1 51.95
G 1 49.90 49.06 01 50.51
H 1 50.48 49.16 1 50.53

average test 52.11 51.05 52.44

model size 430,092.5 457,428 1,574,259

• Improvements over MERT, mostly on pooled-cat tuning set.

• 1.5M features make serial tuning on pooled-cat infeasible.

• Overfitting effect on small pooled data.
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Single- and Multi-Task Perceptron
single-task tuning multi-task tuning

indep. 0 pooled 1 pooled-cat 2 IPC 3 sharding 4 resharding 5

pooled test – 51.33 1 51.77 12 52.56 12 52.54 12 52.60

A 54.79 54.76 01 55.31 012 56.35 012 56.22 012 56.21
B 12 52.45 51.30 1 52.19 012 52.78 0123 52.98 012 52.96
C 2 56.62 56.65 1 56.12 01245 57.76 012 57.30 012 57.44
D 1 50.75 49.88 1 50.63 01245 51.54 012 51.33 012 51.20
E 1 49.70 49.23 01 49.92 012 50.51 012 50.52 012 50.38
F 1 51.60 51.09 1 51.71 012 52.28 012 52.43 012 52.32
G 1 49.50 49.06 01 49.97 012 50.84 012 50.88 012 50.74
H 1 49.77 49.50 01 50.64 012 51.16 012 51.07 012 51.10

average test 51.90 51.42 52.06 52.90 52.84 52.79

model size 366,869.4 448,359 1,478,049 100,000 100,000 100,000

• Multi-task tuning improves BLEU over all single-task runs.

• Also more efficient due to iterative feature selection.

• Difference between natural and random tasks inconclusive.
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Single- and Multi-Task Margin Perceptron
single-task tuning multi-task tuning

indep. 0 pooled 1 pooled-cat 2 IPC 3 sharding 4 resharding 5

pooled test – 51.33 1 52.58 12 52.98 12 52.95 12 52.99

A 1 56.09 55.33 1 55.92 0124556.78 012 56.62 012 56.53
B 1 52.45 51.59 1 52.44 01253.31 012 53.35 012 53.21
C 1 57.20 56.85 01 57.54 0157.46 1 57.42 1 57.43
D 1 50.51 50.18 01 51.38 0124552.14 0125 51.82 012 51.66
E 1 50.27 49.36 01 50.72 012451.13 012 50.89 012 51.02
F 1 52.06 51.20 01 52.61 0124553.07 012 52.80 012 52.87
G 1 50.00 49.58 01 50.90 0124551.36 012 51.19 012 51.11
H 1 50.57 49.80 01 51.32 01251.57 012 51.62 01 51.47

average test 52.39 51.74 52.85 53.35 53.21 53.16

model size 423,731.5 484,483 1,697,398 100,000 100,000 100,000

• Single-task runs beat standard perceptron w/ and w/o `1.

• Regularization by margin and multi-task learning adds up.

• Best result is nearly 2 BLEU points better than MERT.
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Conclusion

• Multi-task learning for SMT is efficient due to online learning,
parallelization and feature selection,

• but also effective in terms of BLEU improvements over
single-task learning.

• Multi-task distributed learning is easy to implement as
wrapper around perceptron.
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Future Work: Task Adaption

• Natural tasks are slightly advantageous over random tasks.
• Goal: Adapt task definition to SMT problem.

• Explore various similarity metrics on IPC subclasses,
• jointly optimize task partitioning and SMT performance.
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Future Work: Adaptive Regularization

Algorithm 2 Path-Following Multi-task Distributed SGD
Get data for Z tasks, each including S sentences; distribute to machines.
Initialize v← 0; λ0, λmin, ε.
for epochs t ← 0 . . . T − 1: do

for all tasks z ∈ {1 . . . Z}: parallel do
Perform task-specific learning

end for
Stack weights W← [w1,t,S,0| . . . |wZ ,t,S,0]

T

for feature columns d ∈ {1 . . .D} in W: do
if ||wd ||2 ≤ λt then

v[d] = 0
else

v[d] = 1
Z

Z∑
z=1

W[z][d]

end if
end for
Set λt+1 = min{λt ,

∑
z,i,j (lz,i,j (vt−1)−lz,i,j (vt ))

ε
}

if λt+1 < λmin then
break

end if
end for
return v
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Thanks for your attention!
dtrain codebase is part of cdec:

https://github.com/redpony/cdec.
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