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Learning from Big Data in SMT

¢ Machine learning theory and practice suggests benefits from
using expressive feature representations and from tuning
on large training samples.

o Discriminative training in SMT has mostly been content with
tuning small sets of dense features on small development
data (Och NAACLO03).

» Notable exceptions and recent success stories using larger
feature and training sets:

Liang et al. ACL06: 1.5M features, 67K parallel sentences.

Tillmann and Zhang ACL06: 35M feats, 230K sents.

Blunsom et al. ACL08: 7.8M feats, 100K sents.

Simianer, Riezler, Dyer ACL12: 4.7M feats, 1.6M sents.

Flanigan, Dyer, Carbonell NAACL13: 28.8M feats, 1M sents.
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Framework: Multi-Task Learning

o Goal: A number of statistical models need to be estimated
simultaneously from data belonging to different tasks.
o Examples:

» OCR of handwritten characters from different writers: Exploit
commonalities on pixel- or stroke-level shared between writers.

o LTR from search engine query logs from different countries:
Some queries are country-specific (“football”), most preference
rankings are shared across countries.

o |dea:
e Learn a shared model that takes advantage of commonalities
among tasks, without neglecting individual knowledge.

e Problem of simultaneous learning is harder, but it also offers
possibility of knowledge sharing.
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Multi-Task Distributed SGD for Discriminative SMT

o Idea: Take advantage of algorithms designed for hard
problems to ease discriminative SMT on big data.
o Distribute work,
o learn efficiently on each example,
¢ share information.

¢ Method:
o Distributed learning using Hadoop/MapReduce or Sun Grid
Engine.
¢ Online learning via Stochastic Gradient Descent optimization.
« Feature selection via ¢; /¢, block norm regularization on
features across multiple tasks.
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Related Work

¢ Online learning:
» We deploy pairwise ranking perceptron (Shen & Joshi
JMLR’05)
e and margin perceptron (Collobert & Bengio ICML04).
¢ Distributed learning:
» Without feature selection, our algorithm reduces to Iterative
Mixing (McDonald et al. NAACL10),
¢ which itself is related to Bagging (Breiman JMLR’96) if shards
are treated as random samples.



Introduction Related Work Algorithms Experiments

Related Work

» (1 /5 regularization:

» Related to group-Lasso approaches which use mixed norms
(Yuan & Lin JRSS’06), hierarchical norms (Zhao et al. Annals
Stats’09), structured norms (Martins et al. EMNLP’11).

o Difference: Norms and proximity operators are applied to
groups of features in single regression or classification task —
multi-task learning groups features orthogonally by tasks.

o Closest relation to Obozinski et al. StatComput’'10: Our
algorithm is weight-based backward feature elimination variant
of their gradient-based forward feature selection algorithm.
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OL Framework: Pairwise Ranking Perceptron

 Preference pairs X; = (xm, j( )) where x/m is ordered above
j( ) w.rt. sentence-wise BLEU (Nakov et al. COLING’12).

* Hinge loss-type objective
li(w) = (= (w,%; )+

where X; = x/ 2 (a), = max(0,a) ,w € RP is a weight
vector, and (-, > denotes the standard vector dot product.

« Ranking perceptron by stochastic subgradient descent:

—X; if <W,)-(j> <0,
0 else.

i - {
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OL framework: Margin Perceptron

¢ Hinge loss-type objective

fiw) = (1 — (W, %))+

¢ Stochastic subgradient descent:

—X; if (w,X;) <1,
0 else.

i~ {
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OL framework: Margin Perceptron

¢ Hinge loss-type objective

fiw) = (1 — (W, %))+

¢ Stochastic subgradient descent:

—X; if (w, X)) <1,
VIJ(W) — ) ( I>
0 else.
e Margin term controls capacity, but results in more updates.

o Collobert & Bengio (ICML04) argue that this justifies not using
an explicit regularization (as for example in an SGD version of
the SVM (Shalev-Shwartz et al. ICML07)).
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MTL Framework: ¢4 //> Block Norm Regularization
o Data points {(Xzn, ¥Yzn), 2 =1,....Z, n=1,...,N;},
sampled from P, on X x Y (z = task; n = data point).
o Objective:
min Z’; In(Wz) + A|W[1 2
z?

o where W = (W), 4 is a Z-by-D matrix W = (w?), 4 of
D-dimensional row vectors w, and Z-dimensional column
vectors w9 of weights associated with feature d across tasks.

» Weighted ¢4 /¢, norm:
D
AWz =2 |wi
d=1

« Each ¢, norm of a weight column w represents the relevance
of the corresponding feature across tasks.



Algorithms

(1 /¢ Regularization Explained

=
o
)
o
-
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o
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o
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wh ow? ow? wt w wh w? w? owt w
w, [ 6 4 0 0 0 ] [ 6 4 0 0 0 ]
w., [0 0 3 0 0 ] [ 3 0 0 0 0 ]
w. [0 0 0 2 3] [ 2 3 0 0 0 ]
column ¢2 norm: 6 4 3 2 3 7 5 0 0 0
{1 sum: = 18 = 12

« (1 sum of £, norms encourages several feature columns w¢ to
be 0 and others to have high weights across tasks.
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(1 /¢> Regularization Explained

wl w2 ow? ow! ow® wl w2 owl ow! owP
w, [ 6 4 0 0 0 ] [ 6 4 0 0 0 ]
w., [0 0 3 0 0 ] [ 3 0 0 0 0 ]
w.,, [ 0 0 0 2 3] [ 2 3 0 0 0 ]
column ¢2 norm: 6 4 3 2 3 7 5 0 0 0
{1 sum: = 18 = 12

« (1 sum of £, norms encourages several feature columns w¢ to
be 0 and others to have high weights across tasks.

¢ Algorithm idea:

o Contribution to loss reduction must outweigh regularizer
penalty in order to activate feature by non-zero weight.
* Weight-based feature elimination criterion:

If [wé], < A, set W[z][d] = 0,Vz.

* Implementation by threshold on K features or by threshold .
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Algorithms

Implementation as Feature Selection Algorithm

Algorithm 1 Multi-task Distributed SGD

Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize v < 0.
forepochs t <+ 0...T —1:do
for all tasks z € {1...Z}: parallel do
Wz t0,0 <V
for all sentences i€ {0...S — 1}:do
Decode i input with W  ; o.
for all pairs j € {0... P — 1}:do
Wz it < Wz tij— nVE(Wz 1))

end for
Wz t,i+1,0 < Wz ti P
end for
end for
Stack weights W <— [Wy ¢ s 0| ... |Wz.ts0]"

Select top K feature columns of W by ¢ norm
fork < 1...Kdo

vkl = 3 é Wz][K]

end for
end for
return v
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Experiments: Random vs. Natural Tasks

* Research Question:

* As shown in earlier work (Simianer, Riezler, Dyer ACL12),
multi-task learning can be used as general regularization
technique on random shards.
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Experiments: Random vs. Natural Tasks

* Research Question:

* As shown in earlier work (Simianer, Riezler, Dyer ACL12),
multi-task learning can be used as general regularization
technique on random shards.

o Can multi-task learning benefit from natural task structure in
the data, where shared and individual knowledge is properly
balanced?
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Data

Human Necessities

Performing Operations, Transporting
Chemistry, Metallurgy

Textiles, Paper

Fixed Constructions

Mechanical Engineering, Lighting,
Heating, Weapons

Physics

Electricity

MmMmOoOO >

o

o International Patent Classification (IPC) categorizes patents
hierarchically into eight sections, 120 classes, 600
subclasses, down to 70,000 subgroups at the leaf level.

o Typically, a patent belongs to more than one section, with one
section chosen as main classification.

o Eight top classes/sections used to define natural tasks.
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SMT Setup

(1) X — X hat X, versprochen; X; promised X,
(2) X — X; hat mir X, versprochen;

Xy promised me X
(3) X — X versprach Xo; X; promised Xz

o Hierarchical phrase-based translation (Chiang CL0Q7),

formalizes translation rules as productions of synchronous
context-free grammar (SCFG).
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SMT Setup

(1) X — X hat X, versprochen; X; promised X,
(2) X — X; hat mir X, versprochen;

Xy promised me X
(3) X — X versprach Xo; X; promised Xz

o Hierarchical phrase-based translation (Chiang CL0Q7),
formalizes translation rules as productions of synchronous
context-free grammar (SCFG).

o Features in discriminative training:

¢ Rule identifiers for SCFG productions
Examples: rule (1), (2) and (3)
* Rule n-gram features in source and target
Examples: “X hat”, “hat X”, “X versprochen”
¢ Rule shape features
Examples: (NT, termx, NT, termx; NT, termx, NT) for (1), (2);
(NT, termx, NT; NT, termx, NT) for rule (3).

14/22



MERT Baseline w/ 12 Dense Features

single-task tuning

indep. © pooled! pooled-cat 2

pooled test - 51.18 51.22
A 54.92 925527 055.17
B 51.53 51.48 0151.69
C 1256.31 255.90 55.74
D 49.94 050.33 050.26
E 149.19 48.97 149.13
F 1251.26 51.02 51.12
G 149.61 49.44 49.55
H 49.38 49.50 0149.67
average test 51.52 51.49 51.54

» Neither tuning on pooled or pooled-cat improves over indep..
» ¥c{01.2}BL EU denotes statistical significance of pairwise test.
» Tuning was repeated 3 times and BLEU scores averaged.
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Single-Task Perceptron w/ /1 Regularization

single-task tuning

indep. © pooled !  pooled-cat 2

pooled test - 50.75 152.08
A 155.11 54.32 01 55.94
B 152.61 50.84 152.57
C 56.18 56.11 01 56.75
D 150.68 49.48 015122
E 150.27 48.69 150.01
F 151.68 50.71 151.95
G 149.90 49.06 0150.51
H 150.48 49.16 150.53
average test 52.11 51.05 52.44

model size  430,092.5 457,428 1,574,259

¢ Improvements over MERT, mostly on pooled-cat tuning set.
* 1.5M features make serial tuning on pooled-cat infeasible.
o OQverfitting effect on small pooled data.
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Single- and Multi-Task Perceptron

single-task tuning ‘ multi-task tuning

indep. © pooled !  pooled-cat 2 ‘ IPC?3 sharding® resharding ®

pooled test - 51.33 15177 | 125256 125254 1252.60
A 54.79 54.76 015531 0125635 0125622 012'56.21

B 125245 51.30 152.19 0125278 01235298 012'52.96

C 256.62 56.65 156.12 | 12455776 0125730 012 57.44

D 150.75 49.88 150.63 | 012455154 0125133 01251.20

E 149.70 49.23 0149.92 0125051  01250.52 012 50.38

F 151.60 51.09 L5171 0125228 0125243 012 52.32

G 1 49.50 49.06 0149.97 01250.84  01250.88 0125074

H 14977 49.50 0150.64 0125116 125107 01251.10
average test 51.90 51.42 52.06 52.90 52.84 52.79
model size  366,869.4 448,359 1,478,049 ‘ 100,000 100,000 100,000

o Multi-task tuning improves BLEU over all single-task runs.
» Also more efficient due to iterative feature selection.
o Difference between natural and random tasks inconclusive.
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Single- and Multi-Task Margin Perceptron

single-task tuning ‘ multi-task tuning

indep. °  pooled *  pooled-cat ? | IPC3 sharding* resharding °

pooled test - 51.33 152.58 ‘ 125298 125295 125299
A 156.09 55.33 15592 | 012455678 012 56,62 012 56,53

B 15245 51.59 15244 0125331 0125335 012 5321

C 157.20 56.85 015754 0157.46 157.42 157.43

D 150.51 50.18 015138 | 0124552 14 0125 5182 012 51.66

E 150.27 49.36 015072 | 01245113  01250.89 012 51.02

F 152.06 51.20 015261 | 0124553,07 012 52.80 012 57 87

G 150.00 49.58 0150.90 | 9124551.36  ©1251.19 0125111

H 150.57 49.80 0151.32 0125157  91251.62 01 51.47
average test 52.39 51.74 52.85 53.35 53.21 53.16
model size  423,731.5 484,483 1,697,398 ‘ 100,000 100,000 100,000

o Single-task runs beat standard perceptron w/ and w/o ¢1.
¢ Regularization by margin and multi-task learning adds up.
o Best result is nearly 2 BLEU points better than MERT.
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Conclusion

Conclusion

o Multi-task learning for SMT is efficient due to online learning,
parallelization and feature selection,

e but also effective in terms of BLEU improvements over
single-task learning.

o Multi-task distributed learning is easy to implement as
wrapper around perceptron.
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Conclusion

Future Work: Task Adaption

o Natural tasks are slightly advantageous over random tasks.
e Goal: Adapt task definition to SMT problem.

o Explore various similarity metrics on IPC subclasses,
o jointly optimize task partitioning and SMT performance.
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Conclusion

Future Work: Adaptive Regularization

Algorithm 2 Path-Following Multi-task Distributed SGD

Get data for Z tasks, each including S sentences; distribute to machines.
Initialize v <— 0; Ao, Amin, €.
forepochs t <+ 0...T —1:do
for all tasks z € {1...Z}: parallel do
Perform task-specific learning
end for
Stack weights W < [Wq ¢ 50| ... |Wz,5,0]"
for feature columns d € {1...D} in W: do
if w92 < )\ then
v[d] =0

else .
vl[d] = 2 Wiz][d]
end if N
end for

Zz,/,j(/z,/.j(vt—1 )*lz./,)("r))}

Set )\t+1 = min{/\,,
if \t+1 < Amin then
break
end if
end for
return v
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Conclusion

Thanks for your attention!

dtrain codebase is part of cdec:
https://github.com/redpony/cdec.
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