### Multi-Task Learning from Large-Scale High-Dimensional Data

# (joint work with Patrick Simianer\* and Chris Dyer<sup>†</sup>)

\* Department of Computational Linguistics, Heidelberg University, Germany † Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA



| Introduction |  | Conclusion |  |  |
|--------------|--|------------|--|--|
|              |  |            |  |  |
| Big Data     |  |            |  |  |

#### • Data can be characterized as big by

- large size of training set,
- high dimensionality of feature representation of data.
- Not all datasets advertised as "large" meet both requirements (e.g. Learning-to-Rank Challenges at Yahoo! and Microsoft work on *hundreds* of features for *tens of thousands* of queries)
- Our application scenario is **Statistical Machine Translation** (**SMT**), using *billions* of features and training examples.

| Introduction |  | Conclusion |  |  |
|--------------|--|------------|--|--|
|              |  |            |  |  |
| Big Data     |  |            |  |  |

#### • Data can be characterized as big by

- large size of training set,
- high dimensionality of feature representation of data.
- Not all datasets advertised as "large" meet both requirements (e.g. Learning-to-Rank Challenges at Yahoo! and Microsoft work on *hundreds* of features for *tens of thousands* of queries)
- Our application scenario is **Statistical Machine Translation** (**SMT**), using *billions* of features and training examples.

| Introduction |  | Conclusion |  |  |
|--------------|--|------------|--|--|
|              |  |            |  |  |
| Big Data     |  |            |  |  |

- Data can be characterized as big by
  - large size of training set,
  - high dimensionality of feature representation of data.
- Not all datasets advertised as "large" meet both requirements (e.g. Learning-to-Rank Challenges at Yahoo! and Microsoft work on *hundreds* of features for *tens of thousands* of queries)
- Our application scenario is **Statistical Machine Translation** (**SMT**), using *billions* of features and training examples.

# Large Scale Learning

### • Learning problem is large scale if

- training data cannot be stored in RAM (Langford on http://hunch.net/?p=330, 2008),
- time constraint requires that algorithms scale at worst linearly with number of examples (Bottou & Bousquet NIPS'07).
- Solutions:
  - **Online learning** for linear scaling in training sample size (Bottou & Le Cun NIPS'04),
  - combined with **feature selection** for memory efficient feature representation (Langford et al. JMLR'09),
  - combined with parallelization and averaging for parallel acceleration and reduced variance at asymptotic online learning guarantees (Zinkevich et al. NIPS'10).
- We add another dimension: Multi-task learning.

# Large Scale Learning

### • Learning problem is large scale if

- training data cannot be stored in RAM (Langford on http://hunch.net/?p=330, 2008),
- time constraint requires that algorithms scale at worst linearly with number of examples (Bottou & Bousquet NIPS'07).
- Solutions:
  - **Online learning** for linear scaling in training sample size (Bottou & Le Cun NIPS'04),
  - combined with **feature selection** for memory efficient feature representation (Langford et al. JMLR'09),
  - combined with **parallelization** and **averaging** for parallel acceleration and reduced variance at asymptotic online learning guarantees (Zinkevich et al. NIPS'10).
- We add another dimension: Multi-task learning.

# Large Scale Learning

### • Learning problem is large scale if

- training data cannot be stored in RAM (Langford on http://hunch.net/?p=330, 2008),
- time constraint requires that algorithms scale at worst linearly with number of examples (Bottou & Bousquet NIPS'07).
- Solutions:
  - **Online learning** for linear scaling in training sample size (Bottou & Le Cun NIPS'04),
  - combined with **feature selection** for memory efficient feature representation (Langford et al. JMLR'09),
  - combined with **parallelization** and **averaging** for parallel acceleration and reduced variance at asymptotic online learning guarantees (Zinkevich et al. NIPS'10).
- We add another dimension: Multi-task learning.

# Multi-Task Learning

- **Goal:** A number of statistical models need to be estimated simultaneously from data belonging to different tasks.
- Examples:
  - OCR of handwritten characters from different writers: Exploit commonalities on pixel- or stroke-level shared between writers.
  - LTR from search engine query logs from different countries: Some queries are country-specific ("football"), most preference rankings are shared across countries.
- Idea:
  - Learn a shared model that takes advantage of commonalities among tasks, without neglecting individual knowledge.

# Multi-Task Learning

- **Goal:** A number of statistical models need to be estimated simultaneously from data belonging to different tasks.
- Examples:
  - OCR of handwritten characters from different writers: Exploit commonalities on pixel- or stroke-level shared between writers.
  - LTR from search engine query logs from different countries: Some queries are country-specific ("football"), most preference rankings are shared across countries.

#### • Idea:

• Learn a shared model that takes advantage of commonalities among tasks, without neglecting individual knowledge.

# Multi-Task Learning

- **Goal:** A number of statistical models need to be estimated simultaneously from data belonging to different tasks.
- Examples:
  - OCR of handwritten characters from different writers: Exploit commonalities on pixel- or stroke-level shared between writers.
  - LTR from search engine query logs from different countries: Some queries are country-specific ("football"), most preference rankings are shared across countries.

### Idea:

• Learn a shared model that takes advantage of commonalities among tasks, without neglecting individual knowledge.

# Our Application: Learning from Big Data in SMT

- Machine learning theory and practice suggests benefits from using expressive feature representations and from tuning on large training samples.
- Discriminative training in SMT has mostly been content with tuning small sets of dense features on small development data (Och NAACL'03).
- Notable exceptions using larger feature and training sets:
  - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
  - Tillmann and Zhang ACL'06: 35M feats, 230K sents.
  - Blunsom et al. ACL'08: 7.8M feats, 100K sents.
  - Simianer, Riezler, Dyer ACL'12: 4.7M feats, 1.6M sents.
  - Flanigan, Dyer, Carbonell NAACL'13: 28.8M feats, 1M sents.

# Our Application: Learning from Big Data in SMT

- Machine learning theory and practice suggests benefits from using expressive feature representations and from tuning on large training samples.
- Discriminative training in SMT has mostly been content with tuning small sets of dense features on small development data (Och NAACL'03).
- Notable exceptions using larger feature and training sets:
  - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
  - Tillmann and Zhang ACL'06: 35M feats, 230K sents.
  - Blunsom et al. ACL'08: 7.8M feats, 100K sents.
  - Simianer, Riezler, Dyer ACL'12: 4.7M feats, 1.6M sents.
  - Flanigan, Dyer, Carbonell NAACL'13: 28.8M feats, 1M sents.

# Our Application: Learning from Big Data in SMT

- Machine learning theory and practice suggests benefits from using expressive feature representations and from tuning on large training samples.
- Discriminative training in SMT has mostly been content with tuning small sets of dense features on small development data (Och NAACL'03).
- Notable exceptions using larger feature and training sets:
  - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
  - Tillmann and Zhang ACL'06: 35M feats, 230K sents.
  - Blunsom et al. ACL'08: 7.8M feats, 100K sents.
  - Simianer, Riezler, Dyer ACL'12: 4.7M feats, 1.6M sents.
  - Flanigan, Dyer, Carbonell NAACL'13: 28.8M feats, 1M sents.

# Our Approach: Multi-Task Distributed SGD

### • Distribute work and share information!

- Online learning via Stochastic Gradient Descent optimization.
- Distributed learning using Hadoop/MapReduce of SunGridEngine.
- Feature selection via  $\ell_1/\ell_2$  block norm regularization on features across multiple tasks.
- Pooling baseline:
  - Concatenate data from all tasks into one big pool.
  - Becomes infeasible very quickly.
- Independent modeling baseline :
  - Independent training of task specific models.
  - Does not share any knowledge across tasks.

# Our Approach: Multi-Task Distributed SGD

### • Distribute work and share information!

- Online learning via Stochastic Gradient Descent optimization.
- **Distributed learning** using Hadoop/MapReduce or SunGridEngine.
- Feature selection via  $\ell_1/\ell_2$  block norm regularization on features across multiple tasks.
- Pooling baseline:
  - Concatenate data from all tasks into one big pool.
  - Becomes infeasible very quickly.
- Independent modeling baseline :
  - Independent training of task specific models.
  - Does not share any knowledge across tasks.

# Our Approach: Multi-Task Distributed SGD

### • Distribute work and share information!

- Online learning via Stochastic Gradient Descent optimization.
- Distributed learning using Hadoop/MapReduce or SunGridEngine.
- Feature selection via  $\ell_1/\ell_2$  block norm regularization on features across multiple tasks.
- Pooling baseline:
  - Concatenate data from all tasks into one big pool.
  - Becomes infeasible very quickly.
- Independent modeling baseline :
  - Independent training of task specific models.
  - Does not share any knowledge across tasks.

# Our Approach: Multi-Task Distributed SGD

### • Distribute work and share information!

- Online learning via Stochastic Gradient Descent optimization.
- Distributed learning using Hadoop/MapReduce or SunGridEngine.
- Feature selection via  $\ell_1/\ell_2$  block norm regularization on features across multiple tasks.

#### • Pooling baseline:

- Concatenate data from all tasks into one big pool.
- Becomes infeasible very quickly.
- Independent modeling baseline :
  - Independent training of task specific models.
  - Does not share any knowledge across tasks.

# Our Approach: Multi-Task Distributed SGD

### • Distribute work and share information!

- **Online learning** via Stochastic Gradient Descent optimization.
- Distributed learning using Hadoop/MapReduce or SunGridEngine.
- Feature selection via  $\ell_1/\ell_2$  block norm regularization on features across multiple tasks.

### Pooling baseline:

- Concatenate data from all tasks into one big pool.
- Becomes infeasible very quickly.
- Independent modeling baseline :
  - Independent training of task specific models.
  - Does not share any knowledge across tasks.

# Our Approach: Multi-Task Distributed SGD

### • Distribute work and share information!

- **Online learning** via Stochastic Gradient Descent optimization.
- Distributed learning using Hadoop/MapReduce or SunGridEngine.
- Feature selection via  $\ell_1/\ell_2$  block norm regularization on features across multiple tasks.

### Pooling baseline:

- Concatenate data from all tasks into one big pool.
- Becomes infeasible very quickly.
- Independent modeling baseline :
  - Independent training of task specific models.
  - Does not share any knowledge across tasks.

| Introduction |  | Conclusion |
|--------------|--|------------|
|              |  |            |

### **Related Work**

#### • Online learning:

- We deploy pairwise ranking perceptron (Shen & Joshi JMLR'05)
- and margin perceptron (Collobert & Bengio ICML'04).

#### Distributed learning:

- Without feature selection, our algorithm reduces to Iterative Mixing (McDonald et al. NAACL'10),
- which itself is related to Bagging (Breiman JMLR'96) if shards are treated as random samples.

| Introduction |  | Conclusion |
|--------------|--|------------|
|              |  |            |

### **Related Work**

#### Online learning:

- We deploy pairwise ranking perceptron (Shen & Joshi JMLR'05)
- and margin perceptron (Collobert & Bengio ICML'04).

#### Distributed learning:

- Without feature selection, our algorithm reduces to Iterative Mixing (McDonald et al. NAACL'10),
- which itself is related to Bagging (Breiman JMLR'96) if shards are treated as random samples.

| Introduction |      |  | Conclusion |
|--------------|------|--|------------|
|              |      |  |            |
| Deleted      | Mork |  |            |

### Related Work

### • l<sub>1</sub>/l<sub>2</sub> regularization:

- Related to group-Lasso approaches which use mixed norms (Yuan & Lin JRSS'06), hierarchical norms (Zhao et al. Annals Stats'09), structured norms (Martins et al. EMNLP'11).
- Difference: Norms and proximity operators are applied to groups of features in single regression or classification task – multi-task learning groups features orthogonally by tasks.
- Closest relation to Obozinski et al. StatComput'10: Our algorithm is weight-based backward feature elimination variant of their gradient-based forward feature selection algorithm.

### OL Framework: Pairwise Ranking Perceptron

- Preference pairs  $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$  where  $\mathbf{x}_j^{(1)}$  is ordered above  $\mathbf{x}_j^{(2)}$  w.r.t. sentence-wise BLEU (Nakov et al. COLING'12).
- Hinge loss-type objective

 $l_j(\mathbf{w}) = (-\langle \mathbf{w}, \bar{\mathbf{x}}_j \rangle)_+$ 

where  $\bar{\mathbf{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$ ,  $(a)_+ = \max(0, a)$ ,  $\mathbf{w} \in \mathbb{R}^D$  is a weight vector, and  $\langle \cdot, \cdot \rangle$  denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j 
angle \leq 0, \ 0 & ext{else.} \end{cases}$$

### OL Framework: Pairwise Ranking Perceptron

- Preference pairs  $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$  where  $\mathbf{x}_j^{(1)}$  is ordered above  $\mathbf{x}_j^{(2)}$  w.r.t. sentence-wise BLEU (Nakov et al. COLING'12).
- Hinge loss-type objective

$$l_j(\mathbf{w}) = (- \langle \mathbf{w}, ar{\mathbf{x}}_j 
angle)_+$$

where  $\mathbf{\bar{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$ ,  $(a)_+ = \max(0, a)$ ,  $\mathbf{w} \in \mathbb{R}^D$  is a weight vector, and  $\langle \cdot, \cdot \rangle$  denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j 
angle \leq \mathbf{0}, \ \mathbf{0} & ext{else.} \end{cases}$$

### OL Framework: Pairwise Ranking Perceptron

- Preference pairs  $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$  where  $\mathbf{x}_j^{(1)}$  is ordered above  $\mathbf{x}_j^{(2)}$  w.r.t. sentence-wise BLEU (Nakov et al. COLING'12).
- Hinge loss-type objective

$$l_j(\mathbf{w}) = (- \langle \mathbf{w}, ar{\mathbf{x}}_j 
angle)_+$$

where  $\mathbf{\bar{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$ ,  $(a)_+ = \max(0, a)$ ,  $\mathbf{w} \in \mathbb{R}^D$  is a weight vector, and  $\langle \cdot, \cdot \rangle$  denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j 
angle \leq 0, \ 0 & ext{else.} \end{cases}$$

| Algorithms |  | Conclusion |
|------------|--|------------|
|            |  |            |
|            |  |            |

### OL framework: Margin Perceptron

Hinge loss-type objective

$$I_j(\mathbf{w}) = (1 - \langle \mathbf{w}, \bar{\mathbf{x}}_j \rangle)_+$$

• Stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j 
angle < 1, \ 0 & ext{else.} \end{cases}$$

- Margin term controls capacity, but results in more updates.
- Collobert & Bengio (ICML'04) argue that this justifies not using an explicit regularization (as for example in an SGD version of the SVM (Shalev-Shwartz et al. ICML'07)).

| Algorithms |                | Conclusion |
|------------|----------------|------------|
|            |                |            |
|            | 's Development |            |

### OL framework: Margin Perceptron

Hinge loss-type objective

$$I_j(\mathbf{w}) = (1 - \langle \mathbf{w}, \mathbf{\bar{x}}_j \rangle)_+$$

• Stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j 
angle < 1, \ 0 & ext{else.} \end{cases}$$

- Margin term controls capacity, but results in more updates.
- Collobert & Bengio (ICML'04) argue that this justifies not using an explicit regularization (as for example in an SGD version of the SVM (Shalev-Shwartz et al. ICML'07)).

|                 | Algorithms  |               | Conclusion |
|-----------------|-------------|---------------|------------|
|                 |             |               |            |
| OL from         | work: Moral | n Doroontron  |            |
| <b>OL</b> Halle | work. warg  | in Perceptron |            |

- - Hinge loss-type objective

$$I_j(\mathbf{w}) = (1 - \langle \mathbf{w}, \mathbf{\bar{x}}_j \rangle)_+$$

• Stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j 
angle < 1, \ 0 & ext{else.} \end{cases}$$

- Margin term controls capacity, but results in more updates.
- Collobert & Bengio (ICML'04) argue that this justifies not using an explicit regularization (as for example in an SGD version of the SVM (Shalev-Shwartz et al. ICML'07)).

### MTL Framework: $\ell_1/\ell_2$ Block Norm Regularization

Data points {(*x<sub>zn</sub>*, *y<sub>zn</sub>*), *z* = 1,..., *Z*, *n* = 1,..., *N<sub>z</sub>*}, sampled from *P<sub>z</sub>* on *X* × *Y* (*z* = task; *n* = data point).

• Objective:

 $\min_{\mathbf{W}} \sum_{z,n} I_n(\mathbf{w}_z) + \lambda \|\mathbf{W}\|_{1,2}$ 

 where W = (w<sup>d</sup><sub>z</sub>)<sub>z,d</sub> is a Z-by-D matrix W = (w<sup>d</sup><sub>z</sub>)<sub>z,d</sub> of D-dimensional row vectors w<sub>z</sub> and Z-dimensional column vectors w<sup>d</sup> of weights associated with feature d across tasks.

Weighted l<sub>1</sub>/l<sub>2</sub> norm:

$$\lambda \|\mathbf{W}\|_{1,2} = \lambda \sum_{d=1}^{D} \|\mathbf{w}^{d}\|_{2}$$

 Each l<sub>2</sub> norm of a weight column w<sup>d</sup> represents the relevance of the corresponding feature across tasks.

### MTL Framework: $\ell_1/\ell_2$ Block Norm Regularization

- Data points { $(x_{zn}, y_{zn}), z = 1, ..., Z, n = 1, ..., N_z$ }, sampled from  $P_z$  on  $X \times Y$  (z = task; n = data point).
- Objective:

$$\min_{\mathbf{W}}\sum_{z,n}I_n(\mathbf{w}_z)+\lambda\|\mathbf{W}\|_{1,2}$$

- where W = (w<sup>d</sup><sub>z</sub>)<sub>z,d</sub> is a Z-by-D matrix W = (w<sup>d</sup><sub>z</sub>)<sub>z,d</sub> of D-dimensional row vectors w<sub>z</sub> and Z-dimensional column vectors w<sup>d</sup> of weights associated with feature d across tasks.
- Weighted l<sub>1</sub>/l<sub>2</sub> norm:

$$\lambda \|\mathbf{W}\|_{1,2} = \lambda \sum_{d=1}^{D} \|\mathbf{w}^d\|_2$$

 Each l<sub>2</sub> norm of a weight column w<sup>d</sup> represents the relevance of the corresponding feature across tasks.

### MTL Framework: $\ell_1/\ell_2$ Block Norm Regularization

- Data points { $(x_{zn}, y_{zn}), z = 1, ..., Z, n = 1, ..., N_z$ }, sampled from  $P_z$  on  $X \times Y$  (z = task; n = data point).
- Objective:

$$\min_{\mathbf{W}}\sum_{z,n}I_n(\mathbf{w}_z)+\lambda\|\mathbf{W}\|_{1,2}$$

- where W = (w<sup>d</sup><sub>z</sub>)<sub>z,d</sub> is a Z-by-D matrix W = (w<sup>d</sup><sub>z</sub>)<sub>z,d</sub> of D-dimensional row vectors w<sub>z</sub> and Z-dimensional column vectors w<sup>d</sup> of weights associated with feature d across tasks.
- Weighted  $\ell_1/\ell_2$  norm:

$$\lambda \| \mathbf{W} \|_{1,2} = \lambda \sum_{d=1}^{D} \| \mathbf{w}^{d} \|_{2}$$

 Each l<sub>2</sub> norm of a weight column w<sup>d</sup> represents the relevance of the corresponding feature across tasks.

| Introduction       | Algorithn                                    | าร                       |                |                |                |                |   |     |                |                |                |                |                |   | Conclusion |
|--------------------|----------------------------------------------|--------------------------|----------------|----------------|----------------|----------------|---|-----|----------------|----------------|----------------|----------------|----------------|---|------------|
|                    |                                              |                          |                |                |                |                |   |     |                |                |                |                |                |   |            |
| $\ell_1/\ell_2$ Re | $\ell_1/\ell_2$ Regularization Explained     |                          |                |                |                |                |   |     |                |                |                |                |                |   |            |
|                    |                                              | $\mathbf{w}^1$<br>6<br>0 | $\mathbf{w}^2$ | $\mathbf{w}^3$ | $\mathbf{w}^4$ | $\mathbf{w}^5$ |   |     | $\mathbf{w}^1$ | $\mathbf{w}^2$ | $\mathbf{w}^3$ | $\mathbf{w}^4$ | $\mathbf{w}^5$ |   |            |
|                    | $\mathbf{w}_{z_1}$ [<br>$\mathbf{w}_{z_2}$ [ | 6                        | 4              | 0              | 0              | 0              | ] | [   | 6              | 4              | 0              | 0              | 0              | ] |            |
|                    | <b>W</b> 22                                  | 0                        | 0              | 3              | 0              | 0              | 1 | ] [ | 3              | 0              | 0              | 0              | 0              | 1 |            |

- be **0** and others to have high weights across tasks.
- Algorithm idea:
  - Contribution to loss reduction must outweigh regularizer penalty in order to activate feature by non-zero weight.
  - Weight-based feature elimination criterion:

If  $\|\mathbf{w}^d\|_2 \leq \lambda$ , set  $\mathbf{W}[z][d] = 0, \forall z$ .

Implementation by threshold on K features or by threshold λ.

|                                          | Algorithm            | าร             |                          |                |                |                |    |   |                |                |                |                | Conclusion     |    |  |
|------------------------------------------|----------------------|----------------|--------------------------|----------------|----------------|----------------|----|---|----------------|----------------|----------------|----------------|----------------|----|--|
|                                          |                      |                |                          |                |                |                |    |   |                |                |                |                |                |    |  |
| $\ell_1/\ell_2$ Regularization Explained |                      |                |                          |                |                |                |    |   |                |                |                |                |                |    |  |
|                                          |                      | $\mathbf{w}^1$ | $\mathbf{w}^2$           | $\mathbf{w}^3$ | $\mathbf{w}^4$ | $\mathbf{w}^5$ |    |   | $\mathbf{w}^1$ | $\mathbf{w}^2$ | $\mathbf{w}^3$ | $\mathbf{w}^4$ | $\mathbf{w}^5$ |    |  |
|                                          | $\mathbf{w}_{z_1}$ [ | 6              | $\frac{\mathbf{w}^2}{4}$ | 0              | 0              | 0              | ]  | [ | 6              | 4              | 0              | 0              | 0              | ]  |  |
|                                          | $\mathbf{w}_{z_2}$ [ | 0              |                          | 3              | 0              | 0              | ]  | [ | 3              | 0              | 0              | 0              | 0              | ]  |  |
|                                          | $\mathbf{w}_{z_3}$ [ | 0              | 0                        | 0              | 2              | 3              | ]  | [ | 2              | 3              | 0              | 0              | 0              | ]  |  |
| colum                                    | nn $\ell_2$ norm:    | 6              | 4                        | 3              | 2              | 3              |    |   | 7              | 5              | 0              | 0              | 0              |    |  |
|                                          | $\ell_1$ sum:        |                |                          |                |                | $\Rightarrow$  | 18 |   |                |                |                |                | $\Rightarrow$  | 12 |  |

•  $\ell_1$  sum of  $\ell_2$  norms encourages several feature columns  $\mathbf{w}^d$  to be **0** and others to have high weights across tasks.

#### Algorithm idea:

 $\ell_1$  sum:

- Contribution to loss reduction must outweigh regularizer penalty in order to activate feature by non-zero weight.
- Weight-based feature elimination criterion:

If 
$$\|\mathbf{w}^d\|_2 \leq \lambda$$
, set  $\mathbf{W}[z][d] = 0, \forall z$ .

Implementation by threshold on K features or by threshold  $\lambda$ .

### Multi-Task Learning Algorithm

#### Algorithm 1 Multi-task Distributed SGD

```
Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize \mathbf{v} \leftarrow \mathbf{0}.
for epochs t \leftarrow 0 \dots T - 1: do
for all tasks z \in \{1 \dots Z\}: parallel do
Perform task-specific learning
end for
Stack weights \mathbf{W} \leftarrow [\mathbf{w}_{1,t,S,0}| \dots |\mathbf{w}_{Z,t,S,0}]^T
Perform \ell_1/\ell_2 regularization
end for
return \mathbf{v}
```

### Implementation as Feature Selection Algorithm

#### Algorithm 2 Multi-task Distributed SGD

```
Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize \mathbf{v} \leftarrow \mathbf{0}.
for epochs t \leftarrow 0 \dots T - 1: do
     for all tasks z \in \{1 \dots Z\}: parallel do
          \mathbf{W}_{z,t,0,0} \leftarrow \mathbf{V}
          for all sentences i \in \{0 \dots S - 1\}: do
                Decode i<sup>th</sup> input with \mathbf{w}_{z,t,i,0}.
                for all pairs i \in \{0 \dots P - 1\}: do
                     \mathbf{w}_{z,t,i,i+1} \leftarrow \tilde{\mathbf{w}}_{z,t,i,i} - \eta \nabla l_i(\mathbf{w}_{z,t,i,i})
                end for
                \mathbf{W}_{z,t,i+1,0} \leftarrow \mathbf{W}_{z,t,i,P}
          end for
     end for
     Stack weights \mathbf{W} \leftarrow [\mathbf{w}_{1,t,S,0}] \dots |\mathbf{w}_{Z,t,S,0}|^T
     Select top K feature columns of W by \ell_2 norm
     for k \leftarrow 1 \dots K do
          \mathbf{v}[k] = \frac{1}{Z} \sum_{\tau=1}^{Z} \mathbf{W}[z][k]
     end for
end for
return v
```

### Implementation as Adaptive Path-Following Algorithm

#### Algorithm 3 Path-Following Multi-task Distributed SGD

```
Get data for Z tasks, each including S sentences; distribute to machines.
Initialize \mathbf{v} \leftarrow \mathbf{0}; \lambda_0, \lambda_{\min}, \epsilon.
for epochs t \leftarrow 0 \dots T - 1: do
     for all tasks z \in \{1 \dots Z\}: parallel do
           Perform task-specific learning
     end for
     Stack weights \mathbf{W} \leftarrow [\mathbf{w}_{1,t,S,0}| \dots |\mathbf{w}_{Z,t,S,0}]^T
     for feature columns d \in \{1 \dots D\} in W: do
          if \|\mathbf{w}^d\|_2 \leq \lambda_t then
               v[\ddot{d}] = 0
          else
               \mathbf{v}[d] = \frac{1}{Z} \sum_{i=1}^{Z} \mathbf{W}[z][d]
          end if
     end for
     Set \lambda_{t+1} = \min\{\lambda_t, \frac{\sum_{z,i,j}(l_{z,i,j}(\mathbf{v}_{t-1}) - l_{z,i,j}(\mathbf{v}_t))}{2}\}
     if \lambda_{t+1} < \lambda_{\min} then
           break
     end if
end for
return v
```

#### SMT using Synchronous Context-Free Grammars

- (1)  $X \to X_1$  hat  $X_2$  versprochen;  $X_1$  promised  $X_2$ (2)  $X \to X_1$  hat mir  $X_2$  versprochen;
- (3)  $X \rightarrow X_1$  versprach  $X_2$ ;  $X_1$  promised  $X_2$
- Hierarchical phrase-based translation (Chiang CL'07), formalizes translation rules as productions of synchronous context-free grammar (SCFG).
- Features in discriminative training:
  - **Rule identifiers** for SCFG productions Examples: rule (1), (2) and (3)
  - Rule n-gram features in source and target Examples: "X hat", "hat X", "X versprochen"
  - Rule shape features
     Examples: (NT, term\*, NT, term\*; NT, term\*, NT) for (1), (NT, term\*, NT; NT, term\*, NT) for rule (3).

#### SMT using Synchronous Context-Free Grammars

- (1)  $X \rightarrow X_1$  hat  $X_2$  versprochen;  $X_1$  promised  $X_2$
- (2)  $X \rightarrow X_1$  hat mir  $X_2$  versprochen;
  - $X_1$  promised me  $X_2$
- (3)  $X \rightarrow X_1$  versprach  $X_2$ ;  $X_1$  promised  $X_2$
- Hierarchical phrase-based translation (Chiang CL'07), formalizes translation rules as productions of synchronous context-free grammar (SCFG).
- Features in discriminative training:
  - **Rule identifiers** for SCFG productions Examples: rule (1), (2) and (3)
  - Rule n-gram features in source and target Examples: "X hat", "hat X", "X versprochen"
  - Rule shape features

 $\begin{array}{l} \mbox{Examples: (NT, term*, NT, term*; NT, term*, NT) for (1), (2); \\ (NT, term*, NT; NT, term*, NT) for rule (3). \end{array}$ 

### Experiment I: Random Sharding on Large Parallel Data

- **Idea:** Take advantage of inherent efficiency (and effectiveness) of multi-task learning.
  - Define tasks as random shards of data,
  - either by sharding once or by re-sharding after each epoch.
- Advantage:
  - Hadoop/MapReduce framework offers parallelization by data sharding.
  - Feature selection by  $\ell_1/\ell_2$  block norm regularization on shards iteratively cuts feature space to feasible size.
- See Simianer, Riezler, Dyer ACL'12.

## Experiment I: Random Sharding on Large Parallel Data

- **Idea:** Take advantage of inherent efficiency (and effectiveness) of multi-task learning.
  - Define tasks as random shards of data,
  - either by sharding once or by re-sharding after each epoch.
- Advantage:
  - Hadoop/MapReduce framework offers parallelization by data sharding.
  - Feature selection by  $\ell_1/\ell_2$  block norm regularization on shards iteratively cuts feature space to feasible size.
- See Simianer, Riezler, Dyer ACL'12.

## Experiment I: Random Sharding on Large Parallel Data

- **Idea:** Take advantage of inherent efficiency (and effectiveness) of multi-task learning.
  - Define tasks as random shards of data,
  - either by sharding once or by re-sharding after each epoch.
- Advantage:
  - Hadoop/MapReduce framework offers parallelization by data sharding.
  - Feature selection by  $\ell_1/\ell_2$  block norm regularization on shards iteratively cuts feature space to feasible size.
- See Simianer, Riezler, Dyer ACL'12.

|  | Random Sharding | Conclusion |
|--|-----------------|------------|
|  |                 |            |

#### Data

#### News Commentary(nc)

|            | train-nc        | lm-train- <i>nc</i> | dev-nc    | devtest-nc | test-nc   |
|------------|-----------------|---------------------|-----------|------------|-----------|
| Sentences  | 132,753         | 180,657             | 1057      | 1064       | 2007      |
| Tokens de  | 3,530,907       | —                   | 27,782    | 28,415     | 53,989    |
| Tokens en  | 3,293,363       | 4,394,428           | 26,098    | 26,219     | 50,443    |
| Rule Count | 14,350,552 (1G) | -                   | 2,322,912 | 2,320,264  | 3,274,771 |

#### $\operatorname{Europarl}(ep)$

|             | $\operatorname{train-}ep$ | $\operatorname{lm-train-}ep$ | $\operatorname{dev-}ep$ | devtest-ep       | $	ext{test-}ep$  |
|-------------|---------------------------|------------------------------|-------------------------|------------------|------------------|
| Sentences   | 1,655,238                 | 2,015,440                    | 2000                    | 2000             | 2000             |
| Tokens de   | 45,293,925                | —                            | 57,723                  | 56,783           | 59,297           |
| Tokens $en$ | 45,374,649                | 54,728,786                   | 58,825                  | 58,100           | 60,240           |
| Rule Count  | 203,552,525 (31.5G)       | _                            | 17,738,763              | $17,\!682,\!176$ | $18,\!273,\!078$ |

#### News Crawl(crawl)

|            | dev-crawl | test-crawl10 | test-crawl11     |
|------------|-----------|--------------|------------------|
| Sentences  | 2051      | 2489         | 3003             |
| Tokens de  | 49,848    | 64,301       | 76,193           |
| Tokens en  | 49,767    | 61,925       | 74,753           |
| Rule Count | 9,404,339 | 11,307,304   | $12,\!561,\!636$ |

|           |   | Random Sharding | Conclusion |
|-----------|---|-----------------|------------|
|           |   |                 |            |
| SMT Setup | ) |                 |            |

- cdec (Dyer et al. ACL'10) framework for decoding and induction of SCFGs.
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP'07), extracted by leave-one-out (Zollmann and Sima'an JACL'05) for training-set tuning.
- Scale:
  - Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
  - On Hadoop/MapReduce cluster for 300 parallel jobs this required 2,290 shards for *ep* data set.
  - 5M active features without feature selection on ep data set.

|          |   | Random Sharding | Conclusion |
|----------|---|-----------------|------------|
|          |   |                 |            |
| SMT Setu | C |                 |            |

- cdec (Dyer et al. ACL'10) framework for decoding and induction of SCFGs.
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP'07), extracted by leave-one-out (Zollmann and Sima'an JACL'05) for training-set tuning.
- Scale:
  - Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
  - On Hadoop/MapReduce cluster for 300 parallel jobs this required 2,290 shards for *ep* data set.
  - 5M active features without feature selection on ep data set.

|          |    | Random Sharding | Conclusion |
|----------|----|-----------------|------------|
|          |    |                 |            |
| SMT Setu | qu |                 |            |

- cdec (Dyer et al. ACL'10) framework for decoding and induction of SCFGs.
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP'07), extracted by leave-one-out (Zollmann and Sima'an JACL'05) for training-set tuning.
- Scale:
  - Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
  - On Hadoop/MapReduce cluster for 300 parallel jobs this required 2,290 shards for *ep* data set.
  - 5M active features without feature selection on *ep* data set.

#### Results on News Commentary (nc) data

| Algorithm       | Tuning set       | Features     | #Features | test-nc |
|-----------------|------------------|--------------|-----------|---------|
| Single-task SGD | dev- <i>nc</i>   | default      | 12        | 28.0    |
|                 | dev-nc           | +id,ng,shape | 180k      | 28.15   |
| Multi-task SGD  | train- <i>nc</i> | +id,ng,shape | 100k      | 28.81   |

- Scaling from 12 to 180K features on dev set does not help.
- Scaling to full feature- and training-set does help (+0.8 BLEU).
- Statistical significance assessed by Approximate Randomization (Noreen'89).

#### Results on Europarl (ep) and News Crawl (crawl) data

| Algorithm       | Tuning set       | Features     | #Features | test- <i>ep</i> |
|-----------------|------------------|--------------|-----------|-----------------|
| Single-task SGD | dev- <i>ep</i>   | default      | 12        | 26.42           |
|                 | dev- <i>ep</i>   | +id,ng,shape | 300k      | 28.37           |
| Multi-task SGD  | train- <i>ep</i> | +id,ng,shape | 100k      | 28.62           |

| Alg. | Tuning set                             | Features                | #Feats     | test- <i>crawl</i> 10 | test- <i>crawl</i> 11 |
|------|----------------------------------------|-------------------------|------------|-----------------------|-----------------------|
| ST   | dev- <i>crawl</i><br>dev- <i>crawl</i> | default<br>+id,ng,shape | 12<br>300k | 15.39<br><b>17.8</b>  | 14.43<br><b>16.83</b> |
| MT   | train- <i>ep</i>                       | +id,ng,shape            | 100k       | 19.12                 | 17.33                 |

- Scaling up feature sets helps even for dev-set tuning.
- On large scale tuning set only Multi-task SGD is feasible.
- Additional gains of 0.5 to 1.3 BLEU by scaling to large tuning set on out-of-domain news crawl test data.

#### Experiments II: Random vs. Natural Tasks

#### Research Question:

- As shown, multi-task learning can be used as general regularization technique on random shards.
- Can multi-task learning benefit from natural task structure in the data, where shared and individual knowledge is properly balanced?
- See Simianer & Riezler WMT'13.

#### Experiments II: Random vs. Natural Tasks

#### Research Question:

- As shown, multi-task learning can be used as general regularization technique on random shards.
- Can multi-task learning benefit from **natural task structure** in the data, where shared and individual knowledge is properly balanced?

See Simianer & Riezler WMT'13.

#### Experiments II: Random vs. Natural Tasks

#### Research Question:

- As shown, multi-task learning can be used as general regularization technique on random shards.
- Can multi-task learning benefit from **natural task structure** in the data, where shared and individual knowledge is properly balanced?
- See Simianer & Riezler WMT'13.

|      |    |                                                         | Natural Tasks | Conclusion |
|------|----|---------------------------------------------------------|---------------|------------|
|      |    |                                                         |               |            |
| Data |    |                                                         |               |            |
|      | AB | Human Necessities<br>Performing Operations, Transportir | ng            |            |

- C Chemistry, Metallurgy
- D Textiles, Paper
- E Fixed Constructions
- F Mechanical Engineering, Lighting, Heating, Weapons
- G Physics
- H Electricity
- International Patent Classification (IPC) categorizes patents hierarchically into eight sections, 120 classes, 600 subclasses, down to 70,000 subgroups at the leaf level.
- Typically, a patent belongs to more than one section, with one section chosen as main classification.
- Eight top classes/sections used to define **natural tasks**.

# SMT and Learning Setup

- SCFG framework using sparse local features (as above).
- Learning algorithms:
  - Baselines:
    - MERT (Kumar et al. ACL'09)
    - Single-task perceptron w/ and w/o  $\ell_1$  regularization with clipping (Carpenter 2008)
    - Single-task margin perceptron (Collobert & Bengio ICML'04).
  - Multi-task tuning using standard and margin perceptron.
  - Tuning methods with random components (MERT, random (re)sharding) were repeated 3 times and BLEU scores averaged.

# SMT and Learning Setup

- SCFG framework using sparse local features (as above).
- Learning algorithms:
  - Baselines:
    - MERT (Kumar et al. ACL'09)
    - Single-task perceptron w/ and w/o  $\ell_1$  regularization with clipping (Carpenter 2008)
    - Single-task margin perceptron (Collobert & Bengio ICML'04).
  - Multi-task tuning using standard and margin perceptron.
  - Tuning methods with random components (MERT, random (re)sharding) were repeated 3 times and BLEU scores averaged.

#### Train/dev/test splits

#### • 1.2M parallel sentences from patent domain for training<sup>1</sup>.

- Development and test sets of 2,000 sentences from each of sections A to H for **independent** tuning and testing.
- **Pooled** development and test sets containing 2,000 sentences with all sections evenly represented.
- Pooled-cat development set for tuning on concatenation of data from all sections.

<sup>&</sup>lt;sup>1</sup>http://www.cl.uni-heidelberg.de/statnlpgroup/pattr

### Train/dev/test splits

- 1.2M parallel sentences from patent domain for training<sup>1</sup>.
- Development and test sets of 2,000 sentences from each of sections A to H for **independent** tuning and testing.
- **Pooled** development and test sets containing 2,000 sentences with all sections evenly represented.
- Pooled-cat development set for tuning on concatenation of data from all sections.

<sup>&</sup>lt;sup>1</sup>http://www.cl.uni-heidelberg.de/statnlpgroup/pattr

### MERT Baseline w/ 12 Dense Features

|              | single-task tuning  |                     |                         |  |
|--------------|---------------------|---------------------|-------------------------|--|
|              | indep. <sup>0</sup> | pooled 1            | pooled-cat <sup>2</sup> |  |
| pooled test  | -                   | 51.18               | 51.22                   |  |
| А            | 54.92               | <sup>02</sup> 55.27 | <sup>0</sup> 55.17      |  |
| В            | 51.53               | 51.48               | <sup>01</sup> 51.69     |  |
| С            | <sup>12</sup> 56.31 | <sup>2</sup> 55.90  | 55.74                   |  |
| D            | 49.94               | <sup>0</sup> 50.33  | <sup>0</sup> 50.26      |  |
| Е            | <sup>1</sup> 49.19  | 48.97               | <sup>1</sup> 49.13      |  |
| F            | <sup>12</sup> 51.26 | 51.02               | 51.12                   |  |
| G            | <sup>1</sup> 49.61  | 49.44               | 49.55                   |  |
| Н            | 49.38               | 49.50               | <sup>01</sup> 49.67     |  |
| average test | 51.52               | 51.49               | 51.54                   |  |

- Neither tuning on *pooled* or *pooled-cat* improves over *indep*..
- $x \in \{0,1,2\}$  BLEU denotes statistical significance of pairwise test.

#### Single-Task Perceptron w/ $\ell_1$ Regularization

|              | single-task tuning  |          |                         |  |  |
|--------------|---------------------|----------|-------------------------|--|--|
|              | indep. <sup>0</sup> | pooled 1 | pooled-cat <sup>2</sup> |  |  |
| pooled test  | -                   | 50.75    | <sup>1</sup> 52.08      |  |  |
| А            | <sup>1</sup> 55.11  | 54.32    | <sup>01</sup> 55.94     |  |  |
| В            | <sup>1</sup> 52.61  | 50.84    | <sup>1</sup> 52.57      |  |  |
| С            | 56.18               | 56.11    | <sup>01</sup> 56.75     |  |  |
| D            | <sup>1</sup> 50.68  | 49.48    | <sup>01</sup> 51.22     |  |  |
| Е            | <sup>1</sup> 50.27  | 48.69    | <sup>1</sup> 50.01      |  |  |
| F            | <sup>1</sup> 51.68  | 50.71    | <sup>1</sup> 51.95      |  |  |
| G            | <sup>1</sup> 49.90  | 49.06    | <sup>01</sup> 50.51     |  |  |
| Н            | <sup>1</sup> 50.48  | 49.16    | <sup>1</sup> 50.53      |  |  |
| average test | 52.11               | 51.05    | 52.44                   |  |  |
| model size   | 430,092.5           | 457,428  | 1,574,259               |  |  |

- Improvements over MERT, mostly on pooled-cat tuning set.
- 1.5M features make serial tuning on *pooled-cat* infeasible.
- Overfitting effect on small *pooled* data.

#### Single- and Multi-Task Perceptron

|              | single-task tuning  |                     |                         | n                      | nulti-task tuni      | ng                   |
|--------------|---------------------|---------------------|-------------------------|------------------------|----------------------|----------------------|
|              | indep. <sup>0</sup> | pooled <sup>1</sup> | pooled-cat <sup>2</sup> | IPC <sup>3</sup>       | sharding $^4$        | resharding $^5$      |
| pooled test  | -                   | 51.33               | 1 51.77                 | <sup>12</sup> 52.56    | <sup>12</sup> 52.54  | <sup>12</sup> 52.60  |
| A            | 54.79               | 54.76               | <sup>01</sup> 55.31     | 012 56.35              | 012 56.22            | 012 56.21            |
| В            | <sup>12</sup> 52.45 | 51.30               | <sup>1</sup> 52.19      | <sup>012</sup> 52.78   | $^{0123}$ 52.98      | <sup>012</sup> 52.96 |
| С            | <sup>2</sup> 56.62  | 56.65               | 1 56.12                 | <sup>01245</sup> 57.76 | <sup>012</sup> 57.30 | <sup>012</sup> 57.44 |
| D            | <sup>1</sup> 50.75  | 49.88               | <sup>1</sup> 50.63      | 01245 51.54            | <sup>012</sup> 51.33 | <sup>012</sup> 51.20 |
| Е            | <sup>1</sup> 49.70  | 49.23               | <sup>01</sup> 49.92     | 012 50.51              | <sup>012</sup> 50.52 | <sup>012</sup> 50.38 |
| F            | <sup>1</sup> 51.60  | 51.09               | <sup>1</sup> 51.71      | <sup>012</sup> 52.28   | <sup>012</sup> 52.43 | <sup>012</sup> 52.32 |
| G            | <sup>1</sup> 49.50  | 49.06               | <sup>01</sup> 49.97     | 012 50.84              | <sup>012</sup> 50.88 | <sup>012</sup> 50.74 |
| Н            | <sup>1</sup> 49.77  | 49.50               | <sup>01</sup> 50.64     | <sup>012</sup> 51.16   | <sup>012</sup> 51.07 | <sup>012</sup> 51.10 |
| average test | 51.90               | 51.42               | 52.06                   | 52.90                  | 52.84                | 52.79                |
| model size   | 366,869.4           | 448,359             | 1,478,049               | 100,000                | 100,000              | 100,000              |

- Multi-task tuning improves BLEU over all single-task runs.
- Also more efficient due to iterative feature selection.
- Difference between natural and random tasks inconclusive.

#### Single- and Multi-Task Margin Perceptron

|              | single-task tuning  |          |                         | n                      | nulti-task tuni      | ing                  |
|--------------|---------------------|----------|-------------------------|------------------------|----------------------|----------------------|
|              | indep. <sup>0</sup> | pooled 1 | pooled-cat <sup>2</sup> | IPC <sup>3</sup>       | sharding $^4$        | resharding 5         |
| pooled test  | -                   | 51.33    | <sup>1</sup> 52.58      | <sup>12</sup> 52.98    | <sup>12</sup> 52.95  | <sup>12</sup> 52.99  |
| А            | <sup>1</sup> 56.09  | 55.33    | <sup>1</sup> 55.92      | 0124556.78             | 012 56.62            | <sup>012</sup> 56.53 |
| В            | <sup>1</sup> 52.45  | 51.59    | <sup>1</sup> 52.44      | <sup>012</sup> 53.31   | <sup>012</sup> 53.35 | <sup>012</sup> 53.21 |
| С            | <sup>1</sup> 57.20  | 56.85    | <sup>01</sup> 57.54     | <sup>01</sup> 57.46    | <sup>1</sup> 57.42   | <sup>1</sup> 57.43   |
| D            | <sup>1</sup> 50.51  | 50.18    | <sup>01</sup> 51.38     | <sup>01245</sup> 52.14 | 0125 51.82           | <sup>012</sup> 51.66 |
| Е            | <sup>1</sup> 50.27  | 49.36    | <sup>01</sup> 50.72     | <sup>0124</sup> 51.13  | <sup>012</sup> 50.89 | <sup>012</sup> 51.02 |
| F            | <sup>1</sup> 52.06  | 51.20    | <sup>01</sup> 52.61     | <sup>01245</sup> 53.07 | <sup>012</sup> 52.80 | <sup>012</sup> 52.87 |
| G            | <sup>1</sup> 50.00  | 49.58    | <sup>01</sup> 50.90     | <sup>01245</sup> 51.36 | <sup>012</sup> 51.19 | <sup>012</sup> 51.11 |
| Н            | <sup>1</sup> 50.57  | 49.80    | <sup>01</sup> 51.32     | <sup>012</sup> 51.57   | <sup>012</sup> 51.62 | <sup>01</sup> 51.47  |
| average test | 52.39               | 51.74    | 52.85                   | 53.35                  | 53.21                | 53.16                |
| model size   | 423,731.5           | 484,483  | 1,697,398               | 100,000                | 100,000              | 100,000              |

- Single-task runs beat standard perceptron w/ and w/o  $\ell_1$ .
- Regularization by margin and multi-task learning adds up.
- Best result is nearly 2 BLEU points better than MERT.

|           |   |  | Conclusion |
|-----------|---|--|------------|
|           |   |  |            |
|           |   |  |            |
| Conclusio | n |  |            |

- Multi-task learning for SMT is **efficient** due to online learning, parallelization and feature selection,
- but also effective in terms of BLEU improvements over single-task learning.
- Multi-task learning is **adaptive** due to path-following in regularization.
- Question: Can task definition be adapted to problem as well?
  - *Natural* task definition show nominal (not statistically significant) advantage.
  - Future work: Optimize clustering of IPC subclasses for multi-task learning in SMT.

|            |   |  | Conclusion |
|------------|---|--|------------|
|            |   |  |            |
|            |   |  |            |
| Conclusion | า |  |            |

- Multi-task learning for SMT is **efficient** due to online learning, parallelization and feature selection,
- but also **effective** in terms of BLEU improvements over single-task learning.
- Multi-task learning is **adaptive** due to path-following in regularization.
- Question: Can task definition be adapted to problem as well?
  - *Natural* task definition show nominal (not statistically significant) advantage.
  - Future work: Optimize clustering of IPC subclasses for multi-task learning in SMT.

|           |   |  | Conclusion |
|-----------|---|--|------------|
|           |   |  |            |
|           |   |  |            |
| Conclusio | n |  |            |

- Multi-task learning for SMT is **efficient** due to online learning, parallelization and feature selection,
- but also **effective** in terms of BLEU improvements over single-task learning.
- Multi-task learning is **adaptive** due to path-following in regularization.
- Question: Can task definition be adapted to problem as well?
  - *Natural* task definition show nominal (not statistically significant) advantage.
  - Future work: Optimize clustering of IPC subclasses for multi-task learning in SMT.

|           |    |  | Conclusion |
|-----------|----|--|------------|
|           |    |  |            |
|           |    |  |            |
| Conclusio | on |  |            |

- Multi-task learning for SMT is **efficient** due to online learning, parallelization and feature selection,
- but also **effective** in terms of BLEU improvements over single-task learning.
- Multi-task learning is **adaptive** due to path-following in regularization.
- Question: Can task definition be adapted to problem as well?
  - *Natural* task definition show nominal (not statistically significant) advantage.
  - Future work: Optimize clustering of IPC subclasses for multi-task learning in SMT.

|           |   |  | Conclusion |
|-----------|---|--|------------|
|           |   |  |            |
|           |   |  |            |
| Conclusic | n |  |            |

- Multi-task learning for SMT is **efficient** due to online learning, parallelization and feature selection,
- but also **effective** in terms of BLEU improvements over single-task learning.
- Multi-task learning is **adaptive** due to path-following in regularization.
- Question: Can task definition be adapted to problem as well?
  - *Natural* task definition show nominal (not statistically significant) advantage.
  - Future work: Optimize clustering of IPC subclasses for multi-task learning in SMT.

|  |  | Conclusion |
|--|--|------------|
|  |  |            |
|  |  |            |

#### IPC

IPC: 8 sections, 120 classes, 600 subclasses, 70,000 subgroups: Is there a *natural* or *useful* task definition for multi-task SMT?

|  |  | Conclusion |
|--|--|------------|
|  |  |            |
|  |  |            |

#### Code

 dtrain code is part of cdec: https://github.com/redpony/cdec. Introduction Algorithms Random Sharding Natural Tasks Conclusion

# Thanks for your attention!