Joint Feature Selection in Distributed Stochastic Learning for Large-Scale Discriminative SMT

Patrick Simianer*, Stefan Riezler*, Chris Dyer[†]

* Department of Computational Linguistics, Heidelberg University, Germany † Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA

- Machine learning theory and practice suggests benefits from tuning on large training samples.
- Discriminative training in SMT has been content with tuning weights for **large feature sets** on **small development data**.
- Why is this?
 - Manually designed "error-correction features" (Chiang et al. NAACL'09) can be tuned well on small datasets.
 - "Syntactic constraint" features (Marton and Resnik ACL'08) don't scale well to large data sets.
 - "Special" overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.

- Machine learning theory and practice suggests **benefits from tuning on large training samples**.
- Discriminative training in SMT has been content with tuning weights for **large feature sets** on **small development data**.
- Why is this?
 - Manually designed "error-correction features" (Chiang et al. NAACL'09) can be tuned well on small datasets.
 - "Syntactic constraint" features (Marton and Resnik ACL'08) don't scale well to large data sets.
 - "Special" overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.

- Machine learning theory and practice suggests **benefits from tuning on large training samples**.
- Discriminative training in SMT has been content with tuning weights for **large feature sets** on **small development data**.
- Why is this?
 - Manually designed "error-correction features" (Chiang et al. NAACL'09) can be tuned well on small datasets.
 - "Syntactic constraint" features (Marton and Resnik ACL'08) don't scale well to large data sets.
 - "Special" overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.

- Machine learning theory and practice suggests **benefits from tuning on large training samples**.
- Discriminative training in SMT has been content with tuning weights for **large feature sets** on **small development data**.
- Why is this?
 - Manually designed "error-correction features" (Chiang et al. NAACL'09) can be tuned well on small datasets.
 - "Syntactic constraint" features (Marton and Resnik ACL'08) don't scale well to large data sets.
 - "Special" overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.

- Machine learning theory and practice suggests **benefits from tuning on large training samples**.
- Discriminative training in SMT has been content with tuning weights for **large feature sets** on **small development data**.
- Why is this?
 - Manually designed "error-correction features" (Chiang et al. NAACL'09) can be tuned well on small datasets.
 - "Syntactic constraint" features (Marton and Resnik ACL'08) don't scale well to large data sets.
 - "Special" overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.

- Machine learning theory and practice suggests **benefits from tuning on large training samples**.
- Discriminative training in SMT has been content with tuning weights for **large feature sets** on **small development data**.
- Why is this?
 - Manually designed "error-correction features" (Chiang et al. NAACL'09) can be tuned well on small datasets.
 - "Syntactic constraint" features (Marton and Resnik ACL'08) don't scale well to large data sets.
 - "Special" overfitting problem in stochastic learning: Weight updates may not generalize well beyond example considered in update.

Introduction Feat	ithms Exp	Results

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?
- Our approach:
 - Deploy **generic local features** that can be read off efficiently from rules at runtime.
 - Combine distributed stochastic learning with feature selection inspired by multi-task learning.
- Results:
 - Feature selection is key for efficiency and quality when tuning on the training set.
 - Significant improvements over tuning large features sets on small dev set and over tuning on training data without *l*₁/*l*₂-based feature selection.

Introduction		

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?
- Our approach:
 - Deploy **generic local features** that can be read off efficiently from rules at runtime.
 - Combine distributed stochastic learning with feature selection inspired by multi-task learning.
- Results:
 - Feature selection is key for efficiency and quality when tuning on the training set.
 - Significant improvements over tuning large features sets on small dev set and over tuning on training data without *l*₁/*l*₂-based feature selection.

Introduction		

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?
- Our approach:
 - Deploy **generic local features** that can be read off efficiently from rules at runtime.
 - Combine distributed stochastic learning with feature selection inspired by multi-task learning.
- Results:
 - Feature selection is key for efficiency and quality when tuning on the training set.
 - Significant improvements over tuning large features sets on small dev set and over tuning on training data without *l*₁/*l*₂-based feature selection.

Introduction		

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?
- Our approach:
 - Deploy **generic local features** that can be read off efficiently from rules at runtime.
 - Combine distributed stochastic learning with feature selection inspired by multi-task learning.
- Results:
 - Feature selection is key for efficiency and quality when tuning on the training set.
 - Significant improvements over tuning large features sets on small dev set and over tuning on training data without *l*₁/*l*₂-based feature selection.

Introduction		

- Research question: Is it possible to benefit from scaling discriminative training for SMT to large training sets?
- Our approach:
 - Deploy **generic local features** that can be read off efficiently from rules at runtime.
 - Combine distributed stochastic learning with feature selection inspired by multi-task learning.
- Results:
 - Feature selection is key for efficiency and quality when tuning on the training set.
 - Significant improvements over tuning large features sets on small dev set and over tuning on training data without
 \mathcal{L}_1/\ell_2-based feature selection.

Introduction		

• Many approaches to discriminative training in last ten years.

- Mostly "large scale" means feature sets of size ≤ 10K, tuning on development data of size 2K.
- Notable exceptions:
 - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL'06: 35M features, 230K parallel sentences.
 - Blunsom et al. ACL'08: 7.8M features, 100K sentences.
- Inspiration for our work: Duh et al. WMT'10 use 500 100-best lists for multi-task learning of 2.4M features.

Introduction		
Deletedwark		

- Many approaches to discriminative training in last ten years.
- Mostly "large scale" means feature sets of size ≤ 10K, tuning on development data of size 2K.
- Notable exceptions:
 - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL'06: 35M features, 230K parallel sentences.
 - Blunsom et al. ACL'08: 7.8M features, 100K sentences.
- Inspiration for our work: Duh et al. WMT'10 use 500 100-best lists for multi-task learning of 2.4M features.

Introduction		
Deleted		

- Many approaches to discriminative training in last ten years.
- Mostly "large scale" means feature sets of size ≤ 10K, tuning on development data of size 2K.
- Notable exceptions:
 - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL'06: 35M features, 230K parallel sentences.
 - Blunsom et al. ACL'08: 7.8M features, 100K sentences.
- Inspiration for our work: Duh et al. WMT'10 use 500 100-best lists for multi-task learning of 2.4M features.

Introduction			
Deleted work	,		

- Many approaches to discriminative training in last ten years.
- Mostly "large scale" means feature sets of size ≤ 10K, tuning on development data of size 2K.
- Notable exceptions:
 - Liang et al. ACL'06: 1.5M features, 67K parallel sentences.
 - Tillmann and Zhang ACL'06: 35M features, 230K parallel sentences.
 - Blunsom et al. ACL'08: 7.8M features, 100K sentences.
- Inspiration for our work: Duh et al. WMT'10 use 500 100-best lists for multi-task learning of 2.4M features.

(1) $X \to X_1$ hat X_2 versprochen; X_1 promised X_2 (2) $X \to X_1$ hat mir X_2 versprochen; X_1 promised me X_2 (3) $X \to X_1$ versprach X_2 ; X_1 promised X_2

- **Rule identifiers** for SCFG productions Examples: rule (1), (2) and (3)
- Rule source n-gram features Examples: "X hat", "hat X", "X versprochen"
- Rule shape features

(1)
$$X \to X_1$$
 hat X_2 versprochen; X_1 promised X_2
(2) $X \to X_1$ hat mir X_2 versprochen;
 X_1 promised me X_2
(3) $X \to X_1$ versprach X_2 ; X_1 promised X_2

- Rule identifiers for SCFG productions Examples: rule (1), (2) and (3)
- Rule source n-gram features Examples: "X hat", "hat X", "X versprochen"
- Rule shape features

(1)
$$X \to X_1$$
 hat X_2 versprochen; X_1 promised X_2
(2) $X \to X_1$ hat mir X_2 versprochen;
 X_1 promised me X_2
(3) $X \to X_1$ versprach X_2 ; X_1 promised X_2

- **Rule identifiers** for SCFG productions Examples: rule (1), (2) and (3)
- Rule source n-gram features Examples: "X hat", "hat X", "X versprochen"
- Rule shape features

(1)
$$X \to X_1$$
 hat X_2 versprochen; X_1 promised X_2
(2) $X \to X_1$ hat mir X_2 versprochen;
 X_1 promised me X_2
(3) $X \to X_1$ versprach X_2 ; X_1 promised X_2

- **Rule identifiers** for SCFG productions Examples: rule (1), (2) and (3)
- Rule source n-gram features
 Examples: "X hat", "hat X", "X versprochen"
- Rule shape features

	Features	Aigoritrims	Experiments	
Lear	ning framework: F	airwise rank	ing using SGD	
	• Preference pairs $\mathbf{x}_j =$	$=(\mathbf{x}_{j}^{(1)},\mathbf{x}_{j}^{(2)})$ whe	ere $\mathbf{x}_{j}^{(1)}$ is preferred o	ver

- $\mathbf{x}_{j}^{(2)}$, are defined by sorting translations $\mathbf{x} \in \mathbb{R}^{D}$ by smoothed sentence-wise BLEU.
- Hinge loss-type objective

$$l_j(\mathbf{w}) = (-\langle \mathbf{w}, \bar{\mathbf{x}}_j \rangle)_+$$

where $\bar{\mathbf{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$, $(a)_+ = \max(0, a)$, $\mathbf{w} \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle \leq 0, \\ 0 & ext{else.} \end{cases}$$

Learning fra	amework: F	airwise rank	ing using SGD	
 Prefer x⁽²⁾ 	ence pairs \mathbf{x}_j =	$= (\mathbf{x}_{j}^{(1)}, \mathbf{x}_{j}^{(2)})$ whe	ere $\mathbf{x}_{j}^{(1)}$ is preferred o	ver

sentence-wise BLEU.

Hinge loss-type objective

$$l_j(\mathbf{w}) = (-\langle \mathbf{w}, \mathbf{\bar{x}}_j \rangle)_+$$

where $\mathbf{\bar{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$, $(a)_+ = \max(0, a)$, $\mathbf{w} \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle \leq 0, \ 0 & ext{else.} \end{cases}$$

IntroductionFeaturesAlgorithmsExperimentsResultsLearning framework: Pairwise ranking using SGD• Preference pairs $\mathbf{x}_j = (\mathbf{x}_j^{(1)}, \mathbf{x}_j^{(2)})$ where $\mathbf{x}_j^{(1)}$ is preferred over
 $\mathbf{x}_i^{(2)}$, are defined by sorting translations $\mathbf{x} \in \mathbb{R}^D$ by smoothed

sentence-wise BLEU.

Hinge loss-type objective

$$l_j(\mathbf{w}) = (-\langle \mathbf{w}, \mathbf{\bar{x}}_j \rangle)_+$$

where $\mathbf{\bar{x}}_j = \mathbf{x}_j^{(1)} - \mathbf{x}_j^{(2)}$, $(a)_+ = \max(0, a)$, $\mathbf{w} \in \mathbb{R}^D$ is a weight vector, and $\langle \cdot, \cdot \rangle$ denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

$$abla l_j(\mathbf{w}) = egin{cases} -ar{\mathbf{x}}_j & ext{if } \langle \mathbf{w}, ar{\mathbf{x}}_j
angle \leq \mathbf{0}, \ \mathbf{0} & ext{else.} \end{cases}$$

Multipartite ranking

- Instead of training on *all* pairs, only compare good translations with bad ones without teasing apart small differences.
- Build pairs from levels HI-MID, HI-LOW, and MID-LOW, but not from translations inside sets on the same level.¹

Here: HI = LOW = 10% of 100-best list.

Multipartite ranking

- Instead of training on *all* pairs, only compare good translations with bad ones without teasing apart small differences.
- Build pairs from levels HI-MID, HI-LOW, and MID-LOW, but not from translations inside sets on the same level.¹

¹Here: HI = LOW = 10% of 100-best list.

	Algorithms	

- Baseline, not distributed, used for tuning on dev set.
- Averages final weight updates of each epoch.

Algorithm 1 SGD

```
Initialize \mathbf{w}_{0,0,0} \leftarrow \mathbf{0}.

for epochs t \leftarrow 0 \dots T - 1: do

for all i \in \{0 \dots I - 1\}: do

Decode i^{\text{th}} input with \mathbf{w}_{t,i,0}.

for all pairs x_j, j \in \{0 \dots P - 1\}: do

\mathbf{w}_{t,i,j+1} \leftarrow \mathbf{w}_{t,i,j} - \eta \nabla l_j(\mathbf{w}_{t,i,j})

end for

\mathbf{w}_{t,i+1,0} \leftarrow \mathbf{w}_{t,i,P}

end for

\mathbf{w}_{t+1,0,0} \leftarrow \mathbf{w}_{t,I,0}

end for

return \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}_{t,0,0}
```

	Algorithms	

- \approx **Distributed SGD** w/ MapReduce (Zinkevich et al. NIPS'10).
- Mixing of final parameters from each shard.

Algorithm 2 MixSGD

```
Partition data into Z shards, each of size S \leftarrow I/Z;
distribute to machines.
for all shards z \in \{1 \dots Z\}: parallel do
      Initialize \mathbf{w}_{z,0,0,0} \leftarrow \mathbf{0}.
      for epochs t \leftarrow 0 \dots T - 1: do
            for all i \in \{0 ... S - 1\}: do
                  Decode i^{\text{th}} input with \mathbf{w}_{z,t,i,0}.
for all pairs x_j, j \in \{0 \dots P-1\}: do
                        \mathbf{w}_{z,t,i,j+1} \leftarrow \mathbf{w}_{z,t,i,j} - \eta \nabla l_j (\mathbf{w}_{z,t,i,j})
                  end for
                  \mathbf{w}_{z,t,i+1,0} \leftarrow \mathbf{w}_{z,t,i,P}
            end for
            \mathbf{w}_{z,t+1,0,0} \leftarrow \mathbf{w}_{z,t,S,0}
      end for
end for
Collect final weights from each machine,
return \frac{1}{Z} \sum_{r=1}^{Z} \left( \frac{1}{T} \sum_{r=1}^{T} \mathbf{w}_{z,t,0,0} \right).
```

	Algorithms	

- \approx Iterative Mixing w/ MapReduce (McDonald et al. HLT'10).
- Mixing of weights from each shard after each epoch.

Algorithm 3 IterMixSGD

```
Partition data into Z shards, each of size S \leftarrow I/Z;
distribute to machines.
Initialize \mathbf{v} \leftarrow \mathbf{0}
for epochs t \leftarrow 0 \dots T - 1: do
      for all shards z \in \{1 \dots Z\}: parallel do
            \mathbf{w}_{z,t,0,0} \leftarrow \mathbf{v}
            for all i \in \{0 \dots S - 1\}: do
                 Decode i^{\text{th}} input with \mathbf{w}_{z,t,i,0}.
for all pairs x_j, j \in \{0 \dots P-1\}: do
                        \mathbf{w}_{z,t,i,j+1} \leftarrow \mathbf{w}_{z,t,i,j} - \eta \nabla l_j(\mathbf{w}_{z,t,i,j})
                 end for
                 \mathbf{w}_{z,t,i+1,0} \leftarrow \mathbf{w}_{z,t,i,P}
           end for
     end for
     Collect weights \mathbf{v} \leftarrow \frac{1}{Z} \sum_{i=1}^{Z} \mathbf{w}_{z,t,S,0}.
end for
return v
```

	Algorithms	

- · Feature selection on shards after each epoch,
- combined with iterative mixing of reduced weight vectors.

Algorithm 4 IterSelSGD

```
Partition data into Z shards, each of size S = I/Z;
distribute to machines.
Initialize \mathbf{v} \leftarrow \mathbf{0}.
for epochs t \leftarrow 0 \dots T - 1: do
     for all shards z \in \{1 \dots Z\}: parallel do
           \mathbf{w}_{z,t,0,0} \leftarrow \mathbf{v}
           for all i \in \{0 \dots S - 1\}: do
                 Decode i^{\text{th}} input with \mathbf{w}_{z,t,i,0}.
for all pairs x_j, j \in \{0 \dots P-1\}: do
                      \mathbf{w}_{z,t,i,j+1} \leftarrow \mathbf{w}_{z,t,i,j} - \eta \nabla l_j(\mathbf{w}_{z,t,i,j})
                 end for
                 \mathbf{w}_{z,t,i+1,0} \leftarrow \mathbf{w}_{z,t,i,P}
           end for
     end for
     Collect/stack weights \mathbf{W} \leftarrow [\mathbf{w}_{1,t,S,0}] \dots |\mathbf{w}_{Z,t,S,0}|^T
     Select top K feature columns of W by \ell_2 norm and
     for k \leftarrow 1 \dots K do
           \mathbf{v}[k] = \frac{1}{Z} \sum_{i} \mathbf{W}[z][k].
     end for
end for
return v
```

	Algorithms	

• Represent weights in a *Z*-by-*D* matrix

$$\mathbf{W} = [\mathbf{w}_{z_1}| \dots |\mathbf{w}_{z_Z}]^T$$

of stacked *D*-dimensional weight vectors across *Z* shards.

- Select top K feature columns that have highest l₂ norm over shards (or equivalently, by setting a threshold λ).
- Average weights of selected features k ← 1...K over shards

$$\mathbf{v}[k] = \frac{1}{Z} \sum_{z=1}^{Z} \mathbf{W}[z][k]$$

Resend reduced weight vector v to shards for new epoch.

	Algorithms	

• Represent weights in a *Z*-by-*D* matrix

$$\mathbf{W} = [\mathbf{w}_{z_1} | \dots | \mathbf{w}_{z_Z}]^T$$

of stacked *D*-dimensional weight vectors across *Z* shards.

 Select top K feature columns that have highest l₂ norm over shards (or equivalently, by setting a threshold λ).

 Average weights of selected features k ← 1...K over shards

$$\mathbf{v}[k] = \frac{1}{Z} \sum_{z=1}^{Z} \mathbf{W}[z][k]$$

Resend reduced weight vector v to shards for new epoch.

	Algorithms	

• Represent weights in a *Z*-by-*D* matrix

$$\mathbf{W} = [\mathbf{w}_{z_1} | \dots | \mathbf{w}_{z_Z}]^T$$

of stacked *D*-dimensional weight vectors across *Z* shards.

- Select top K feature columns that have highest l₂ norm over shards (or equivalently, by setting a threshold λ).
- Average weights of selected features k ← 1...K over shards

$$\mathbf{v}[k] = \frac{1}{Z} \sum_{z=1}^{Z} \mathbf{W}[z][k]$$

• Resend reduced weight vector v to shards for new epoch.

	Algorithms	

• Represent weights in a *Z*-by-*D* matrix

$$\mathbf{W} = [\mathbf{w}_{z_1} | \dots | \mathbf{w}_{z_Z}]^T$$

of stacked *D*-dimensional weight vectors across *Z* shards.

- Select top K feature columns that have highest l₂ norm over shards (or equivalently, by setting a threshold λ).
- Average weights of selected features k ← 1...K over shards

$$\mathbf{v}[k] = \frac{1}{Z} \sum_{z=1}^{Z} \mathbf{W}[z][k]$$

Resend reduced weight vector v to shards for new epoch.

	Algorithms	

- Let *w_d* be the *d*th column vector of **W**, representing the weights for the *d*th feature across shards.
- Weighted ℓ_1/ℓ_2 norm:

$$\lambda \|\mathbf{W}\|_{1,2} = \lambda \sum_{d=1}^{D} \|w_d\|_2.$$

- Each l₂ norm of a weight column represents the relevance of the corresponding feature across shards.
- The l₁ sum of the l₂ norms enforces a selection among features based on these norms.

	Algorithms	

- Let *w_d* be the *d*th column vector of **W**, representing the weights for the *d*th feature across shards.
- Weighted ℓ_1/ℓ_2 norm:

$$\lambda \|\mathbf{W}\|_{1,2} = \lambda \sum_{d=1}^{D} \|w_d\|_2.$$

- Each ℓ_2 norm of a weight column represents the relevance of the corresponding feature across shards.
- The l₁ sum of the l₂ norms enforces a selection among features based on these norms.

	Algorithms	

- Let *w_d* be the *d*th column vector of **W**, representing the weights for the *d*th feature across shards.
- Weighted ℓ_1/ℓ_2 norm:

$$\lambda \|\mathbf{W}\|_{1,2} = \lambda \sum_{d=1}^{D} \|w_d\|_2.$$

- Each l₂ norm of a weight column represents the relevance of the corresponding feature across shards.
- The l₁ sum of the l₂ norms enforces a selection among features based on these norms.

	Algorithms	

- Let *w_d* be the *d*th column vector of **W**, representing the weights for the *d*th feature across shards.
- Weighted ℓ_1/ℓ_2 norm:

$$\lambda \|\mathbf{W}\|_{1,2} = \lambda \sum_{d=1}^{D} \|w_d\|_2.$$

- Each l₂ norm of a weight column represents the relevance of the corresponding feature across shards.
- The l₁ sum of the l₂ norms enforces a selection among features based on these norms.

- Multi-task learning aims to find common set of features that are relevant simultaneously to different tasks.
- Minimizing l₁/l₂ norm promotes feature sharing and enforces similar sparsity patterns across tasks.
- Example: 2 matrices for 5 features and 3 tasks/shards.

\mathbf{W}_{z_1}							
\mathbf{W}_{z_2} [
\mathbf{W}_{z_3}							

- Right-hand side has smaller ℓ_1/ℓ_2 norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).²

²Alternative is incremental forward selection (Obozinski et al. 2010)

	Algorithms	

- Multi-task learning aims to find common set of features that are relevant simultaneously to different tasks.
- Minimizing l₁/l₂ norm promotes feature sharing and enforces similar sparsity patterns across tasks.
- Example: 2 matrices for 5 features and 3 tasks/shards.

W_{z_1}							
W_{Z_2}							
W_{Z3}							

- Right-hand side has smaller ℓ_1/ℓ_2 norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).²

²Alternative is incremental forward selection (Obozinski et al. 2010)

	Algorithms	

- Multi-task learning aims to find common set of features that are relevant simultaneously to different tasks.
- Minimizing l₁/l₂ norm promotes feature sharing and enforces similar sparsity patterns across tasks.
- Example: 2 matrices for 5 features and 3 tasks/shards.

		w_1	w_2	w_3	w_4	w_5			w_1	w_2	w_3	w_4	w_5	
\mathbf{w}_{z_1}	[6	4	0	0	0]] [6	4	0	0	0]
\mathbf{w}_{z_2}	Ĩ	0	0	3	0	0	j	j į	3	0	0	0	0	j
\mathbf{w}_{z_3}	Ĩ	0	0	0	2	3	j	j į	2	3	0	0	0	j
column ℓ_2 norm:	-	6	4	3	2	3	-		7	5	0	0	0	-
ℓ_1 sum:						\Rightarrow	18						\Rightarrow	12

- Right-hand side has smaller ℓ_1/ℓ_2 norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).²

²Alternative is incremental forward selection (Obozinski et al. 2010)

	Algorithms	

- Multi-task learning aims to find common set of features that are relevant simultaneously to different tasks.
- Minimizing l₁/l₂ norm promotes feature sharing and enforces similar sparsity patterns across tasks.
- Example: 2 matrices for 5 features and 3 tasks/shards.

		w_1	w_2	w_3	w_4	w_5			w_1	w_2	w_3	w_4	w_5	
\mathbf{w}_{z_1}	[6	4	0	0	0]] [6	4	0	0	0]
\mathbf{w}_{z_2}	ĺ	0	0	3	0	0	j	l í	3	0	0	0	0	j
\mathbf{w}_{z_3}	[0	0	0	2	3]] [2	3	0	0	0]
column ℓ_2 norm:		6	4	3	2	3			7	5	0	0	0	
ℓ_1 sum:						\Rightarrow	18						\Rightarrow	12

- Right-hand side has smaller ℓ_1/ℓ_2 norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).²

²Alternative is incremental forward selection (Obozinski et al. 2010)

- Multi-task learning aims to find common set of features that are relevant simultaneously to different tasks.
- Minimizing l₁/l₂ norm promotes feature sharing and enforces similar sparsity patterns across tasks.
- Example: 2 matrices for 5 features and 3 tasks/shards.

		w_1	w_2	w_3	w_4	w_5			w_1	w_2	w_3	w_4	w_5	
\mathbf{w}_{z_1}	[6	4	0	0	0]	[6	4	0	0	0]
\mathbf{w}_{z_2}	[0	0	3	0	0]] [3	0	0	0	0]
\mathbf{w}_{z_3}	[0	0	0	2	3]] [2	3	0	0	0]
column ℓ_2 norm:		6	4	3	2	3			7	5	0	0	0	
ℓ_1 sum:						\Rightarrow	18						\Rightarrow	12

- Right-hand side has smaller ℓ_1/ℓ_2 norm (12 instead of 18).
- Algorithm 4 enforces this choice by weight-based recursive feature elimination (Lal et al. 2006).²

²Alternative is incremental forward selection (Obozinski et al. 2010)

- German-to-English hierarchical phrase-based translation (Chiang CL'07).
- cdec (Dyer et al. ACL'10) framework for decoding, induction of SCFGs, compound splitting, etc.
- 3-gram and 5-gram language models using SRILM (Stolcke ICSLP'02) and binarized for efficient querying using kenIm (Heafield WMT'11).
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP'07), extracted by leave-one-out (Zollmann and Sima'an JACL'05) for training-set tuning.

- German-to-English hierarchical phrase-based translation (Chiang CL'07).
- cdec (Dyer et al. ACL'10) framework for decoding, induction of SCFGs, compound splitting, etc.
- 3-gram and 5-gram language models using SRILM (Stolcke ICSLP'02) and binarized for efficient querying using kenIm (Heafield WMT'11).
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP'07), extracted by leave-one-out (Zollmann and Sima'an JACL'05) for training-set tuning.

- German-to-English hierarchical phrase-based translation (Chiang CL'07).
- cdec (Dyer et al. ACL'10) framework for decoding, induction of SCFGs, compound splitting, etc.
- 3-gram and 5-gram language models using SRILM (Stolcke ICSLP'02) and binarized for efficient querying using kenlm (Heafield WMT'11).
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP'07), extracted by leave-one-out (Zollmann and Sima'an JACL'05) for training-set tuning.

- German-to-English hierarchical phrase-based translation (Chiang CL'07).
- cdec (Dyer et al. ACL'10) framework for decoding, induction of SCFGs, compound splitting, etc.
- 3-gram and 5-gram language models using SRILM (Stolcke ICSLP'02) and binarized for efficient querying using kenIm (Heafield WMT'11).
- SCFG per-sentence grammars are stored on disk instead of in memory (Lopez EMNLP'07), extracted by leave-one-out (Zollmann and Sima'an JACL'05) for training-set tuning.

• MapReduce cluster able to handle 300 jobs at once.

- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.

- MapReduce cluster able to handle 300 jobs at once.
- Data are split into shards holding about 1,000 sentences, corresponding to dev set size.
- Training and decoding fit MapReduce framework very naturally:
 - Storing grammars on disk instead of memory deploys DFS with minimal overhead of loading grammars immediately prior to decoding.
 - Algorithm 4 uses data shards for distribution with minimal extra network communication.

- Interest in relative gains by scaling up features and/or data, thus choice for perceptron as base learner.
- Evaluation using lowercased BLEU-4 (mteval-v11b.pl).
- Statistical significance assessed by Approximate Randomization (Noreen'89).

- Interest in relative gains by scaling up features and/or data, thus choice for perceptron as base learner.
- Evaluation using lowercased BLEU-4 (mteval-v11b.pl).
- Statistical significance assessed by Approximate Randomization (Noreen'89).

- Interest in relative gains by scaling up features and/or data, thus choice for perceptron as base learner.
- Evaluation using lowercased BLEU-4 (mteval-v11b.pl).
- Statistical significance assessed by Approximate Randomization (Noreen'89).

- Interest in relative gains by scaling up features and/or data, thus choice for perceptron as base learner.
- Evaluation using lowercased BLEU-4 (mteval-v11b.pl).
- Statistical significance assessed by Approximate Randomization (Noreen'89).

	Experiments	

Data

News Commentary(nc)

	train-nc	lm-train- nc	dev-nc	devtest-nc	test-nc
Sentences	132,753	180,657	1057	1064	2007
Tokens de	3,530,907	-	27,782	28,415	53,989
Tokens en	3,293,363	4,394,428	26,098	26,219	50,443
Rule Count	14,350,552 (1G)	-	2,322,912	2,320,264	3,274,771

$\operatorname{Europarl}(ep)$

	$\operatorname{train-} ep$	$\operatorname{lm-train-} ep$	$\operatorname{dev-}ep$	devtest-ep	test-ep
Sentences	1,655,238	2,015,440	2000	2000	2000
Tokens de	45,293,925	—	57,723	56,783	59,297
Tokens en	45,374,649	54,728,786	58,825	58,100	60,240
Rule Count	203,552,525 (31.5G)	_	17,738,763	$17,\!682,\!176$	18,273,078

News Crawl(crawl)

	dev-crawl	test-crawl10	test-crawl11
Sentences	2051	2489	3003
Tokens de	49,848	64,301	76,193
Tokens en	49,767	61,925	74,753
Rule Count	9,404,339	11,307,304	12,561,636

Results on News Commentary (nc) data

Alg.	Tuning set	Features	#Features	test-nc
1	dev- <i>nc</i>	default	12	28.0
	dev- <i>nc</i>	+id,ng,shape	180k	28.15 ³⁴
2	train- <i>nc</i>	default	12	27.86
2	train- <i>nc</i>	+id,ng,shape	4.7M	27.86 ³⁴
3	train- <i>nc</i>	default	12	27.94 [†]
	train- <i>nc</i>	+id,ng,shape	4.7M	28.55 ¹²⁴
4	train- <i>nc</i>	+id,ng,shape	100k	28.81 ¹²³

- Scaling from 12 to 180K features on dev set does not help.
- Scaling to full feature- and training-set does help for Alg.3 (+0.4 BLEU) and Alg. 4 (+0.8 BLEU).
- Alg.4 gives best BLEU and is most efficient on large data.

Results on Europarl (ep) and News Crawl (crawl) data

Alg.	Tuning set	Features	#Features	test- <i>ep</i>
1	dev- <i>ep</i>	default	12	26.42 [†]
	dev- <i>ep</i>	+id,ng,shape	300k	28.37
4	train-ep	+id,ng,shape	100k	28.62

Alg.	Tuning set	Features	#Feats	test- <i>crawl</i> 10	test- <i>crawl</i> 11
1	dev- <i>crawl</i> dev- <i>crawl</i>	default +id,ng,shape	12 300k	15.39 [†] 17.8 4	14.43 [†] 16.83 ⁴
4	train- <i>ep</i>	+id,ng,shape	100k	19.12 ¹	17.33 ¹

- On large scale, only Alg.4 is feasible (1.7M parallel data!)
- Scaling up feature sets helps even for dev-set tuning.
- Additional gains of 0.5 to 1.3 BLEU by scaling to large tuning set on out-of-domain news crawl test data.

		Results

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - MapReduce-friendliness in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: It works!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.

		Results
Canaluaian		

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - MapReduce-friendliness in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: It works!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.

		Results
Conclusion		

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - MapReduce-friendliness in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: It works!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.

		Results
Conclusion		

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - MapReduce-friendliness in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: It works!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.

		Results
Conclusion		

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - MapReduce-friendliness in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: It works!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.

		Results
Conclusion		

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - MapReduce-friendliness in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: It works!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.

		Results
Conclusion		

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - MapReduce-friendliness in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: It works!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.

		Results
Conclusion		

- SMT inference on large data sets is expensive, thus **good parallelization is key**.
- Our algorithm makes large-scale tuning in SMT feasible by
 - MapReduce-friendliness in decoding and learning,
 - Combination of parallel SGD and feature selection,
 - Efficiently computable features.
- And: It works!
- Future work:
 - Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
 - More and better features and more sophisticated learners.
 - Application to multi-task patent translation.

		Results

Code

• dtrain code is part of cdec: https://github.com/redpony/cdec. Introduction Features Algorithms Experiments Results

Thanks for your attention!