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Introduction Features Algorithms Experiments Results

Discriminative training in SMT

• Machine learning theory and practice suggests benefits from
tuning on large training samples.

• Discriminative training in SMT has been content with tuning
weights for large feature sets on small development data.

• Why is this?
• Manually designed “error-correction features” (Chiang et al.

NAACL’09) can be tuned well on small datasets.
• “Syntactic constraint” features (Marton and Resnik ACL’08)

don’t scale well to large data sets.
• “Special” overfitting problem in stochastic learning: Weight

updates may not generalize well beyond example considered
in update.
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Introduction Features Algorithms Experiments Results

Our goal: Tuning SMT on the training set

• Research question: Is it possible to benefit from scaling
discriminative training for SMT to large training sets?

• Our approach:
• Deploy generic local features that can be read off efficiently

from rules at runtime.
• Combine distributed stochastic learning with feature

selection inspired by multi-task learning.
• Results:

• Feature selection is key for efficiency and quality when
tuning on the training set.

• Significant improvements over tuning large features sets on
small dev set and over tuning on training data without
`1/`2-based feature selection.
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Introduction Features Algorithms Experiments Results

Related work

• Many approaches to discriminative training in last ten years.

• Mostly “large scale” means feature sets of size ≤ 10K , tuning
on development data of size 2K .

• Notable exceptions:
• Liang et al. ACL’06: 1.5M features, 67K parallel sentences.
• Tillmann and Zhang ACL’06: 35M features, 230K parallel

sentences.
• Blunsom et al. ACL’08: 7.8M features, 100K sentences.

• Inspiration for our work: Duh et al. WMT’10 use 500 100-best
lists for multi-task learning of 2.4M features.
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Introduction Features Algorithms Experiments Results

Local features for SCFGs

(1) X → X1 hat X2 versprochen; X1 promised X2

(2) X → X1 hat mir X2 versprochen;
X1 promised me X2

(3) X → X1 versprach X2; X1 promised X2

• Rule identifiers for SCFG productions

Examples: rule (1), (2) and (3)

• Rule source n-gram features

Examples: “X hat”, “hat X ”, “X versprochen”

• Rule shape features

Examples: (NT, term∗, NT, term∗; NT, term∗, NT) for (1), (2);
(NT, term∗, NT; NT, term∗, NT) for rule (3).
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Introduction Features Algorithms Experiments Results

Learning framework: Pairwise ranking using SGD

• Preference pairs xj = (x(1)
j , x(2)

j ) where x(1)
j is preferred over

x(2)
j , are defined by sorting translations x ∈ IRD by smoothed

sentence-wise BLEU.

• Hinge loss-type objective

lj(w) = (−〈w, x̄j 〉)+

where x̄j = x(1)
j − x(2)

j , (a)+ = max(0, a) , w ∈ IRD is a weight
vector, and 〈·, ·〉 denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 ≤ 0,

0 else.
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Introduction Features Algorithms Experiments Results

Multipartite ranking

HI

MID

LOW

• Instead of training on all pairs, only compare good translations
with bad ones without teasing apart small differences.

• Build pairs from levels HI-MID, HI-LOW, and MID-LOW, but
not from translations inside sets on the same level.1

1Here: HI = LOW = 10% of 100-best list.
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Algorithm 1

• Baseline, not distributed, used for tuning on dev set.
• Averages final weight updates of each epoch.

Algorithm 1 SGD
Initialize w0,0,0 ← 0.
for epochs t← 0 . . . T − 1: do

for all i ∈ {0 . . . I − 1}: do
Decode ith input with wt,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wt,i,j+1 ← wt,i,j − η∇lj(wt,i,j)
end for
wt,i+1,0 ← wt,i,P

end for
wt+1,0,0 ← wt,I,0

end for

return 1
T

T∑
t=1

wt,0,0

8 / 23
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Algorithm 2
• ≈ Distributed SGD w/ MapReduce (Zinkevich et al. NIPS’10).

• Mixing of final parameters from each shard.

Algorithm 2 MixSGD
Partition data into Z shards, each of size S ← I/Z;
distribute to machines.
for all shards z ∈ {1 . . . Z}: parallel do

Initialize wz,0,0,0 ← 0.
for epochs t← 0 . . . T − 1: do

for all i ∈ {0 . . . S − 1}: do
Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
wz,t+1,0,0 ← wz,t,S,0

end for
end for
Collect final weights from each machine,

return 1
Z

Z∑
z=1

(
1
T

T∑
t=1

wz,t,0,0

)
.

9 / 23



Introduction Features Algorithms Experiments Results

Algorithm 3

• ≈ Iterative Mixing w/ MapReduce (McDonald et al. HLT’10).

• Mixing of weights from each shard after each epoch.

Algorithm 3 IterMixSGD
Partition data into Z shards, each of size S ← I/Z;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all shards z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for

Collect weights v← 1
Z

Z∑
z=1

wz,t,S,0.

end for
return v
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Algorithm 4
• Feature selection on shards after each epoch,
• combined with iterative mixing of reduced weight vectors.

Algorithm 4 IterSelSGD
Partition data into Z shards, each of size S = I/Z;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all shards z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs xj , j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for
Collect/stack weights W← [w1,t,S,0| . . . |wZ,t,S,0]

T

Select top K feature columns of W by `2 norm and
for k ← 1 . . .K do

v[k] = 1
Z

Z∑
z=1

W[z][k].

end for
end for
return v

11 / 23
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Algorithm 4 as feature selection procedure

• Represent weights in a Z -by-D matrix

W = [wz1 | . . . |wzZ ]
T

of stacked D-dimensional weight vectors across Z shards.

• Select top K feature columns that have highest `2 norm
over shards (or equivalently, by setting a threshold λ).

• Average weights of selected features k ← 1 . . .K over
shards

v[k ] =
1
Z

Z∑

z=1

W[z][k ]

• Resend reduced weight vector v to shards for new epoch.
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Algorithm 4 as `1/`2 regularization

• Let wd be the d th column vector of W, representing the
weights for the d th feature across shards.

• Weighted `1/`2 norm:

λ||W||1,2 = λ

D∑

d=1

||wd ||2.

• Each `2 norm of a weight column represents the relevance
of the corresponding feature across shards.

• The `1 sum of the `2 norms enforces a selection among
features based on these norms.
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`1/`2 regularization and multi-task learning

• Multi-task learning aims to find common set of features
that are relevant simultaneously to different tasks.

• Minimizing `1/`2 norm promotes feature sharing and
enforces similar sparsity patterns across tasks.

• Example: 2 matrices for 5 features and 3 tasks/shards.
w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

wz1 [ 6 4 0 0 0 ] [ 6 4 0 0 0 ]
wz2 [ 0 0 3 0 0 ] [ 3 0 0 0 0 ]
wz3 [ 0 0 0 2 3 ] [ 2 3 0 0 0 ]

column `2 norm: 6 4 3 2 3 7 5 0 0 0
`1 sum: ⇒ 18 ⇒ 12

• Right-hand side has smaller `1/`2 norm (12 instead of 18).

• Algorithm 4 enforces this choice by weight-based recursive
feature elimination (Lal et al. 2006).2

2Alternative is incremental forward selection (Obozinski et al. 2010)
14 / 23
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Introduction Features Algorithms Experiments Results

Experiments: SMT setup

• German-to-English hierarchical phrase-based translation
(Chiang CL’07).

• cdec (Dyer et al. ACL’10) framework for decoding, induction
of SCFGs, compound splitting, etc.

• 3-gram and 5-gram language models using SRILM (Stolcke
ICSLP’02) and binarized for efficient querying using kenlm
(Heafield WMT’11).

• SCFG per-sentence grammars are stored on disk instead of
in memory (Lopez EMNLP’07), extracted by leave-one-out
(Zollmann and Sima’an JACL’05) for training-set tuning.
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Distributed processing

• MapReduce cluster able to handle 300 jobs at once.

• Data are split into shards holding about 1,000 sentences,
corresponding to dev set size.

• Training and decoding fit MapReduce framework very
naturally:
• Storing grammars on disk instead of memory deploys DFS

with minimal overhead of loading grammars immediately prior
to decoding.

• Algorithm 4 uses data shards for distribution with minimal extra
network communication.
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Learning setup

• Perceptron is deterministic when started from 0 vector while
MIRA and PRO results fluctuate due to hypergraph sampling.

M

x̄

BLEU[%] 23.0 25.0 27.0 29.0

• Interest in relative gains by scaling up features and/or data,
thus choice for perceptron as base learner.

• Evaluation using lowercased BLEU-4 (mteval-v11b.pl).

• Statistical significance assessed by Approximate
Randomization (Noreen’89).
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Data

News Commentary(nc)
train-nc lm-train-nc dev-nc devtest-nc test-nc

Sentences 132,753 180,657 1057 1064 2007
Tokens de 3,530,907 – 27,782 28,415 53,989
Tokens en 3,293,363 4,394,428 26,098 26,219 50,443

Rule Count 14,350,552 (1G) – 2,322,912 2,320,264 3,274,771

Europarl(ep)
train-ep lm-train-ep dev-ep devtest-ep test-ep

Sentences 1,655,238 2,015,440 2000 2000 2000
Tokens de 45,293,925 – 57,723 56,783 59,297
Tokens en 45,374,649 54,728,786 58,825 58,100 60,240

Rule Count 203,552,525 (31.5G) – 17,738,763 17,682,176 18,273,078

News Crawl(crawl)
dev-crawl test-crawl10 test-crawl11

Sentences 2051 2489 3003
Tokens de 49,848 64,301 76,193
Tokens en 49,767 61,925 74,753

Rule Count 9,404,339 11,307,304 12,561,636
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Results on News Commentary (nc) data
Alg. Tuning set Features #Features test-nc

1
dev-nc default 12 28.0

dev-nc +id,ng,shape 180k 28.1534

2
train-nc default 12 27.86

train-nc +id,ng,shape 4.7M 27.8634

3
train-nc default 12 27.94†

train-nc +id,ng,shape 4.7M 28.55124

4 train-nc +id,ng,shape 100k 28.81123

• Scaling from 12 to 180K features on dev set does not help.
• Scaling to full feature- and training-set does help for Alg.3

(+0.4 BLEU) and Alg. 4 (+0.8 BLEU).
• Alg.4 gives best BLEU and is most efficient on large data.
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Results on Europarl (ep) and News Crawl (crawl) data
Alg. Tuning set Features #Features test-ep

1
dev-ep default 12 26.42†

dev-ep +id,ng,shape 300k 28.37

4 train-ep +id,ng,shape 100k 28.62

Alg. Tuning set Features #Feats test-crawl10 test-crawl11

1
dev-crawl default 12 15.39† 14.43†

dev-crawl +id,ng,shape 300k 17.84 16.834

4 train-ep +id,ng,shape 100k 19.121 17.331

• On large scale, only Alg.4 is feasible (1.7M parallel data!)
• Scaling up feature sets helps even for dev-set tuning.
• Additional gains of 0.5 to 1.3 BLEU by scaling to large

tuning set on out-of-domain news crawl test data.
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Conclusion

• SMT inference on large data sets is expensive, thus good
parallelization is key.

• Our algorithm makes large-scale tuning in SMT feasible by
• MapReduce-friendliness in decoding and learning,
• Combination of parallel SGD and feature selection,
• Efficiently computable features.

• And: It works!
• Future work:

• Tricks-of-the-trade (larger lm, etc.) for general competitiveness.
• More and better features and more sophisticated learners.
• Application to multi-task patent translation.
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Code

• dtrain code is part of cdec:

https://github.com/redpony/cdec.
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Thanks for your attention!
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