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The HDU discriminative SMT system

Intuition: Patents have a twofold nature; They are . . .
1 easy to translate: repetitive and formulaic text
2 hard to translate: long sentences and unusual jargon

Method: Discriminative SMT
1 Training: multi-task learning with large, sparse feature sets via
`1/`2 regularization

2 Syntax features: soft-syntactic constraints for complex word
order differences in long sentences
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Subtasks/results

Participation in Chinese-to-English (ZH-EN) and
Japanese-to-English (JP-EN) PatentMT subtasks

• Constrained data situation where only the parallel corpus
provided by the organizers was used

• Results:
JP-EN Rank 5 (constrained: 2) with regard to BLEU on the Intrinsic

Evaluation (IE) test set; IE adequacy 8th, IE acceptability 6th
ZH-EN Rank 9 (constrained: 3) for the ZH-EN translation subtask on

this subtask’s IE test set; IE adequacy 4th, IE acceptability 4th
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Hierarchical phrase-based translation

(1) X → X1 要件 の X2 | X2 of X1 requirements
(2) X → この とき 、 X1 は | this time , the X1 is
(3) X → テキスト メモリ 41 に X1 | X1 in the text memory 41

• Synchronous CFG with rules encoding hierarchical phrases
(Chiang, 2007; Adam Lopez, 2007)

• cdec decoder (Dyer et al., 2010)

5 / 20



Introduction Discriminative SMT Japanese-to-English Chinese-to-English References

Online pairwise-ranking optimization

ranking by BLEU should agree with ...︷ ︸︸ ︷
g(x1) > g(x2) ⇔

the model score of the decoder︷ ︸︸ ︷
f (x1) > f (x2)

⇔ f (x1) − f (x2) > 0

⇔ w · x1 − w · x2 > 0

⇔ w · (x1 − x2) > 0︸ ︷︷ ︸
this can reformulated as a binary classification problem

• For large feature sets we train a pairwise ranking model
using algorithms for stochastic gradient descent

• Gold standard training data is obtained by calculating
per-sentence BLEU scores of translations of kbest lists

• Simplest case: several runs of the perceptron algorithm over a
single development set

• (data-) Parallelized by sharding (multi-task learning),
incorporating `1/`2 regularization 6 / 20
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Algorithm for Multi-Task Learning

• Randomly split data into Z shards

• Run optimization on each shard separately for one iteration

• Collect and stack resulting weight vectors

• Select top K feature columns that have highest `2 norm over
shards (or equivalently, by setting a threshold λ)

• Average weights of selected features k ← 1 . . .K over shards

v[k ] =
1
Z

Z∑
z=1

W[z][k ]

• Resend reduced weight vector v to shards for new iteration
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data

} shards

select features, mix models

. . .
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Feature sets
12 dense features of the default translation model

• Sparse lexicalized features, defined locally on SCFG rules:
Rule identifiers: unique rule identifier
Rule n-grams: bigrams in source and target side of a rule,

e.g. of X1, X1 requirements

Rule shape: 39 patterns identifying location of sequences of
terminal and non-terminal symbols,
e.g. NT, term*, NT -- NT, term*, NT,

term*

(1) X → X1 要件 の X2 | X2 of X1 requirements

• Soft-syntactic constraints on source side:
• 20 features for matching/non-matching of 10 most common

constituents (Marton and Resnik, 2008)

9 / 20



Introduction Discriminative SMT Japanese-to-English Chinese-to-English References

Marton & Resnik’s soft-syntactic constraints

{ADJP,ADVP,CP,DNP,IP,LCP,NP,PP,QP,VP} × {=,+}

• These features indicate if spans in parses of the decoder
match = or cross + constituents in syntactic trees

• We compare these on the source of the data; syntactic trees
are pre-computed; lookup is done online

• In contrast to (Chiang, 2005) these features include the actual
phrase labels
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JP-EN: System Setup

Training data: three million parallel sentences of NTCIR10,
constrained data

Standard SMT pipeline: GIZA word alignments; MeCab for Japanese
segmentation; moses tools for English; lowercased models; 5gram
SRILM language model; grammars with max. two non-terminals

Extensive preprocessing

HDU-1 Multi-task training with sparse rule features combining all
four available development sets

HDU-2 Identical to HDU-1 but training stopped early
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JP-EN: Preprocessing

• English tokenization: we slightly extended the non-breaking
prefixes list (e.g. including FIG., PAT., . . . )

• Consistent tokenization (Ma and Matsoukas, 2011)
• Training data was aligned using regular expressions
• In test and development data we use the most common variant

observed in training data

• Applied a compound splitter to split Katakana terms (Feng
et al., 2011) to decrease the number of OOVs
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JP-EN: Development tuning

tuning set
tuning method dev1 dev2 dev3 dev1,2,3

MERT baseline (avg) 27.85 27.63 27.6 27.76

single dev, dense 27.83 – – –
single dev, +sparse 28.84 28.08 28.71 29.03

multi-task, +sparse – – – 28.92
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ZH-EN: System Setup

Training and development data of NTCIR10 (one million/2000
parallel sentences), constrained setup

Standard SMT pipeline, segmentation of Chinese with the
Stanford Segmenter, no additional preprocessing

HDU-1 Marton & Resnik’s soft-syntactic features, 20 additional
weights tuned with MERT

HDU-2 System as JP-EN with sparse rule features, but unregularized
training on a single development set
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Effects of soft-syntactic constraints I

baseline Another option is coupled to both ends of the fiber
. . . , thereby allowing . . .

soft-syntax Another alternative is to couple the ends of the fiber
. . . , thereby allowing . . .

reference A further option is to optically couple both ends 10 of
the optical fiber 5 . . . , thus allowing . . .
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Effects of soft-syntactic constraints II
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Effects of soft-syntactic constraints III
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The HDU discriminative SMT system: Conclusion

• We achieved solid results for both subtasks with good
automatic and manual evaluation results

• Training a model of sparse features is a very good approach
for patent translation, with improvements of about 1 BLEU
point by just enabling them

• Multi-task learning enables the use of more training data,
newer experiments even point to further possibilities of
improvement with this technique

• Soft-syntactic constraints show the desired effect,
incorporating proper syntax into Hiero models, leading to
better translations (and prettier derivations!)
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