

The HDU Discriminative SMT System for Constrained Data PatentMT at NTCIR10

Institute for Computational Linguistics, Heidelberg University, Germany Patrick Simianer, Gesa Stupperich, Laura Jehl, Katharina Wäschle, Artem Sokolov, Stefan Riezler {simianer,stupperich,jehl,waeschle,sokolov,riezler}@cl.uni-heidelberg.de

Patents are easy to translate, they contain lots of repetitive and formulaic text \Rightarrow train a model of **sparse lexicalized features** on a large data set using **multi-task learning**; incorporate ℓ_1/ℓ_2 **regularization** to find most important features

Sparse, lexicalized features attached to SCFG rules

(1) $X \to X_1$ 要件の $X_2 | X_2$ of X_1 requirements (2) $X \to$ このとき、 X_1 は | this time, the X_1 is

(3) $X \rightarrow$ テキスト メモリ 41 に $X_1 | X_1$ in the text memory 41

Rule identifiers: unique rule identifier

Rule *n*-grams: bigrams in source and target side of a rule,

e.g. of X_1 , X_1 requirements

Rule shape: 39 patterns identifying location of sequences of terminal and non-terminal symbols, e.g. (for rule (1)) NT, term*, NT | NT, term*, NT, term* Patents are hard to translate, long sentences and an unusual jargon are common \Rightarrow enable **soft-syntactic constraints** in a SCFG/Hiero model to deal with long distance dependencies

Parsematch rescoring feature (Vilar et al, 2010)

- Introduce a quantity, m(i, j) which records the distance (penalized exponentially) of a span i, j to its closest syntactic label
- For matching we only consider single sentence pairs (original work used all data) No improvements on dev: 34.06 (baseline) \rightarrow 34.07

There is a very large number of potential features (\gg than the number of rules in the grammar)

Pairwise-ranking model

 $g(\mathbf{x}_{1}) > g(\mathbf{x}_{2}) \Leftrightarrow f(\mathbf{x}_{1}) > f(\mathbf{x}_{2})$ $\Leftrightarrow f(\mathbf{x}_{1}) - f(\mathbf{x}_{2}) > 0$ $\Leftrightarrow \mathbf{w} \cdot \mathbf{x}_{1} - \mathbf{w} \cdot \mathbf{x}_{2} > 0 \quad (1)$ $\Leftrightarrow \mathbf{w} \cdot \underbrace{(\mathbf{x}_{1} - \mathbf{x}_{2})}_{=\bar{\mathbf{x}}_{i}} > 0$ $\mathbf{x}_{1,2}$ feature representations of translations

 $g(\cdot)$ (per-sentence) BLEU score $f(\cdot)$ model score of the decoder w weight vector (model/decoder) $x \cdot y$ vector dot product

Hinge loss for a stochastic pairwise-ranking perceptron

$$L_{i}(\boldsymbol{w}) = \max(0, -\boldsymbol{w} \cdot \bar{\boldsymbol{x}}_{i})$$

$$\nabla L_{i} = \begin{cases} -\bar{\boldsymbol{x}}_{i} \text{ if } \boldsymbol{w} \cdot \bar{\boldsymbol{x}}_{i} \leq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Gold standard ranking: BLEU+1 scores of translations of *k* best lists

Multi-task learning, ℓ_1/ℓ_2 regularization and parallelization Z = 7 shards

- ${\scriptstyle \bullet}$ Randomly split data into Z shards
- Select top K feature columns that have highest ℓ_2 norm over shards (or equivalently, by setting a threshold $\lambda)$
- Average weights of selected features over shards
- Resend reduced weight vector to shards for new epoch

devtest results	tuning set
tuning method	dev1 dev2 dev3 dev1,2,3
baseline (MERT)	27.85 27.63 27.6 27.76
single dev, dense features	27.83
single dev, sparse features	28.84 28.08 28.71 29.03
multi-task, sparse features	28.92

Preprocessing (JP-EN only)

• JP: Full-width-latin characters converted to their standard UTF-8 equivalents

- JP: Katakana term splitting (RWTH NTCIR9) w/ compound splitter (Koehn/Knight, 2003)
- EN: Customized tokenizer (avoid splitting of FIG. or PAT. ...)
- both: Consistent tokenization (BBN NTCIR9): training data aligned using regular expressions; for test/dev sources applied the most common variants

SMT setup: cdec SCFG decoder (Dyer, 2010); Hiero grammars (2 non-terminals max., ...) built w/ impl. of the suffix array extraction technique of (Lopez, 2007); 5gram modified Kneser-Ney smoothed LM built w/ SRILM; lowercased models; high values for cube pruning pop limit (500) and span size limit (100) at test time; Chinese segmentation w/ Stanford Segmenter, Japanese w/ MeCab; parses w/ Stanford Parser; English tokenizing/recasing/truecasing w/ moses tools

na- put tion device

(d) Derivation using XP2 features

Systems & results:

Constrained setup for both JP-EN and ZH-EN subtasks: using only provided parallel data Japanese-to-English subtask

HDU-1 Multi-task training with sparse features combining all four available dev setsHDU-2 Identical to HDU-1 but training stopped early

Rank #5 and #6 in terms of BLEU on the *IE* test set (#2/#3 considering constrained systems), #8 IE adequacy, #6 IE acceptability

Chinese-to-English subtask

HDU-1 Marton & Resnik's soft-syntactic features (*XP2* configuration), tuned w/ single dev set **HDU-2** System as JP-EN with sparse rule features, but model learned on a single dev set

Rank #9 and #10 in terms of BLEU on IE test set (constrained #3/#4),

#4 IE adequacy, #4 IE acceptability