The HDU Discriminative SMT System for Constrained Data PatentMT at NTCIR10

Institute for Computational Linguistics，Heidelberg University，Germany
Patrick Simianer，Gesa Stupperich，Laura Jehl，Katharina Wäschle，Artem Sokolov，Stefan Riezler
\｛simianer，stupperich，jehl，waeschle，sokolov，riezler\}@cl.uni-heidelberg.de

Patents are easy to translate，they contain lots of repetitive and formulaic text \Rightarrow train a model of sparse lexicalized features on a large data set using multi－task learning；incorporate ℓ_{1} / ℓ_{2} regularization to find most important features
Sparse，lexicalized features attached to SCFG rules
（1）$X \rightarrow X_{1}$ 要件の $X_{2} \mid X_{2}$ of X_{1} requirements
（2）$X \rightarrow$ このとき，X_{1} は｜this time，the X_{1} is
（3）$X \rightarrow$ テキストメモリ 41 に $X_{1} \mid X_{1}$ in the text memory 41
Rule identifiers：unique rule identifier
Rule n－grams：bigrams in source and target side of a rule，
e．g．of X_{1}, X_{1} requirements
Rule shape： 39 patterns identifying location of sequences of terminal and non－terminal symbols，e．g．（for rule（1））
NT，term＊，NT｜NT，term＊，NT，term＊

There is a very large number of potential features $(\gg$ than the number of rules in the grammar）

Pairwise－ranking model

$$
\begin{align*}
g\left(\mathbf{x}_{1}\right)>g\left(\mathbf{x}_{2}\right) & \Leftrightarrow f\left(\mathbf{x}_{1}\right)>f\left(\mathbf{x}_{2}\right) \\
& \Leftrightarrow f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right)>0 \\
& \Leftrightarrow \boldsymbol{w} \cdot \boldsymbol{x}_{1}-\boldsymbol{w} \cdot \mathbf{x}_{2}>0 \tag{1}\\
& \Leftrightarrow \boldsymbol{w} \cdot \underbrace{\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)}_{=\overline{\mathbf{x}}_{i}}>0
\end{align*}
$$

$x_{1,2}$ feature representations of translations
$g(\cdot)$（per－sentence）BLEU score
$f(\cdot)$ model score of the decoder
w weight vector（model／decoder）
$x \cdot y$ vector dot product
Hinge loss for a stochastic pairwise－ranking perceptron

$$
\begin{align*}
& L_{i}(\boldsymbol{w})=\max \left(0,-\boldsymbol{w} \cdot \overline{\mathbf{x}}_{i}\right) \tag{2}\\
& \nabla L_{i}=\left\{\begin{array}{cc}
-\overline{\mathbf{x}}_{i} \text { if } \boldsymbol{w} \cdot \overline{\mathbf{x}}_{i} \leqslant 0 \\
0 & \text { otherwise }
\end{array}\right. \tag{3}
\end{align*}
$$

Gold standard ranking：BLEU＋1 scores of translations of kbest lists
Multi－task learning，ℓ_{1} / ℓ_{2} regularization and parallelization

$$
\begin{array}{rcccccc}
& \mathrm{f}_{1} & \mathrm{f}_{2} & \mathrm{f}_{3} & \mathrm{f}_{4} & \mathrm{f}_{5} \\
\boldsymbol{w}_{1} & {[} & 5 & 4 & 3 & 4 & 0 \\
\boldsymbol{w}_{2} & {[} & 2 & 0 & 4 & 1 & 1 \\
\boldsymbol{w}_{3} & {[} & 4 & 0 & 0 & 3 & 0 \\
\ell_{2} \text { norms } & 9 & 4 & 5 & 5 & 1 \\
\cline { 2 - 6 } \text { sort } & \mathrm{f}_{1} & \mathrm{f}_{3} & \mathrm{f}_{4} & \mathrm{f}_{2} & \mathrm{f}_{5} \\
\text { select } \mathrm{K}=3 & \mathrm{f}_{1} & \mathrm{f}_{3} & \mathrm{f}_{4} & & \\
\text { mix } & 11 / 3 & 7 / 3 & 7 / 3 & &
\end{array}
$$

（b）Feature selection
（a）Parallelization strategy

Figure 1：Multi－task learning algorithm
－Randomly split data into Z shards
－Select top K feature columns that have highest ℓ_{2} norm over shards（or equivalently，by setting a threshold λ ）
－Average weights of selected features over shards
－Resend reduced weight vector to shards for new epoch

| devtest results
 tuning method | tuning set | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | dev1 | dev2 | dev3 | dev1，2，3 |
| baseline（MERT） | 27.85 | 27.63 | 27.6 | 27.76 |
| single dev，dense features | 27.83 | - | - | - |
| single dev，sparse features | 28.84 | 28.08 | 28.71 | 29.03 |
| multi－task，sparse features | - | - | - | 28.92 |

Preprocessing（JP－EN only）
－JP：Full－width－latin characters converted to their standard UTF－8 equivalents
－JP：Katakana term splitting（RWTH NTCIR9）w／compound splitter （Koehn／Knight，2003）
－EN：Customized tokenizer（avoid splitting of FIG ．or PAT．．．．）
－both：Consistent tokenization（BBN NTCIR9）：training data aligned using regular expressions；for test／dev sources applied the most common variants
SMT setup：cdec SCFG decoder（Dyer，2010）；Hiero grammars（2 non－terminals max．，．．．）built w／impl．of the suffix array extraction technique of（Lopez，2007）；5gram modified Kneser－Ney smoothed LM built w／SRILM；lowercased models；high values for cube pruning pop limit（500） and span size limit（100）at test time；Chinese segmentation w／Stanford Segmenter，Japanese w／MeCab；parses w／Stanford Parser；English tokenizing／recasing／truecasing w／moses tools

Patents are hard to translate，long sentences and an unusual jargon are common \Rightarrow enable soft－syntactic constraints in a SCFG／Hiero model to deal with long distance dependencies
Parsematch rescoring feature（Vilar et al，2010）
－Introduce a quantity，$m(i, j)$ which records the distance（penalized exponentially）of a span i, j to its closest syntactic label
－For matching we only consider single sentence pairs（original work used all data）
No improvements on dev： 34.06 （baseline）$\rightarrow 34.07$

（a）Syntax tree

Marton \＆Resnik＇s（2008）soft－syntactic constraints
$\{A D J P, A D V P, C P, D N P, I P, L C P, N P, P P, Q P, V P\} \times\{=,+\}$
－Indicate if spans in decoder derivations match＝or cross＋constituents of syntactic trees
－In contrast to（Chiang，2005）these features do include the actual phrase labels
－Weights may be tied（marker：＇2＇）or set independently（marker：＇＇）
－IP2 VP2 NP（5 features，NP tied，IP／VP independent）；XP2（20 features）
Results on dev： 34.06 （baseline）$\rightarrow 34.57$（IP2 VP2 NP）$\rightarrow 34.84$（XP2）
Effects of soft－syntactic constraints
baseline Another option is coupled to both ends of ．．．，thereby al－ lowing．
$X P 2$ Another alternative is to couple the ends of \ldots ，thereby al－ lowing
reference A further option is to optically couple both ends 10 of \ldots ， thus allowing

Systems \＆results：

Constrained setup for both JP－EN and ZH－EN subtasks：using only provided parallel data Japanese－to－English subtask
HDU－1 Multi－task training with sparse features combining all four available dev sets
HDU－2 Identical to HDU－1 but training stopped early
Rank \＃5 and \＃6 in terms of BLEU on the IE test set（\＃2／\＃3 considering constrained systems）， \＃8 IE adequacy，\＃6 IE acceptability

Chinese－to－English subtask

HDU－1 Marton \＆Resnik＇s soft－syntactic features（XP2 configuration），tuned w／single dev set HDU－2 System as JP－EN with sparse rule features，but model learned on a single dev set
\＃4 IE adequacy，\＃4 IE acceptability

